Skip to main content Accessibility help
×
Home

Daily shedding dynamics of E. coli O157 in an Australian grass-fed beef herd

  • G. A. C. LAMMERS (a1) (a2), D. JORDAN (a3), C. S. McCONNEL (a4) and J. HELLER (a1) (a2)

Summary

This study aimed to describe the diurnal shedding dynamics of Escherichia coli O157 in cattle managed on pasture. The purpose was to identify the value of a single measurement for predicting the shedding status on subsequent days. Over a 14-day period, 24 beef cows with known E. coli O157 shedding status were sampled twice daily or daily (21 sampling points) and E. coli O157 was enumerated from faeces. No association between shedding status of individual animals within a 7-h period was identified (odds ratio 1·5, P = 0·08). Short-interval sampling demonstrated substantial diurnal volatility in shedding of E. coli O157 that is not evident in studies based on long-interval (>7 days) sampling. The findings contribute to and support previous findings on the question why it has been difficult to achieve progress in understanding the epidemiology of E. coli O157 infection in cattle.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Daily shedding dynamics of E. coli O157 in an Australian grass-fed beef herd
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Daily shedding dynamics of E. coli O157 in an Australian grass-fed beef herd
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Daily shedding dynamics of E. coli O157 in an Australian grass-fed beef herd
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Mrs G. A. C. Lammers, School of Animal and Veterinary Science, Charles Sturt University, Pine Gully Road, Wagga Wagga, NSW 2650, Australia (Email: glammers@csu.edu.au)

References

Hide All
1. Pennington, H. Escherichia coli O157. Lancet 2010; 376: 14281435.
2. Chapman, PA, et al. Cattle as a possible source of verocytotoxin-producing Escherichia coli O157 infections in man. Epidemiology and Infection 1993; 111: 439447.
3. Chase-Topping, M, et al. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nature Reviews Microbiology 2008; 6: 904912.
4. Matthews, L, et al. Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. Proceedings of the National Academy of Sciences USA 2013; 110: 1626516270.
5. Munns, KD, et al. Are super-shedder feedlot cattle really super? Foodborne Pathogens and Disease 2014; 11: 329331.
6. Smith, RP, Paiba, GA, Ellis-Iversen, J. Longitudinal study to investigate VTEC O157 shedding patterns in young cattle. Research in Veterinary Science 2010; 88: 411414.
7. Williams, KJ, et al. A longitudinal study of the prevalence and super-shedding of Escherichia coli O157 in dairy heifers. Veterinary Microbiology 2014; 173: 101109.
8. Besser, TE, et al. Duration of detection of fecal excretion of Escherichia coli O157:H7 in cattle. Journal of Infectious Diseases 1997; 175: 726729.
9. Robinson, SE, et al. Intermittent and persistent shedding of Escherichia coli O157 in cohorts of naturally infected calves. Journal of Applied Microbiology 2004; 97: 10451053.
10. Shere, JA, Bartlett, KJ, Kaspar, CW. Longitudinal study of Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin. Applied and Environmental Microbiology 1998; 64: 13901399.
11. Widiasih, DA, et al. Duration and magnitude of faecal shedding of Shiga toxin-producing Escherichia coli from naturally infected cattle. Epidemiology and Infection 2004; 132: 6775.
12. Williams, KJ, et al. Relative sensitivity of Escherichia coli O157 detection from bovine feces and rectoanal mucosal swabs. Journal of Food Protection 2014; 77: 972976.
13. Lim, JY, et al. Escherichia coli O157:H7 colonization at the rectoanal junction of long-duration culture-positive cattle. Applied and Environmental Microbiology 2007; 73: 13801382.
14. Chase-Topping, ME, et al. Risk factors for the presence of high-level shedders of Escherichia coli O157 on Scottish farms. Journal of Clinical Microbiology 2007; 45: 15941603.
15. LeJeune, JT, et al. Comparison of E. coli O157 and Shiga toxin-encoding genes (stx) prevalence between Ohio, USA and Norwegian dairy cattle. International Journal of Food Microbiology 2006; 109: 1924.
16. Williams, KJ, Ward, MP, Dhungyel, OP. Daily variations in Escherichia coli O157 shedding patterns in a cohort of dairy heifers at pasture. Epidemiology and Infection 2015; 143: 13881397.
17. Echeverry, A, et al. Effect of intensity of fecal pat sampling on estimates of Escherichia coli O157 prevalence. American Journal of Veterinary Research 2005; 66: 20232027.
18. Pearce, MC, et al. Distribution of Escherichia coli O157 in bovine fecal pats and its impact on estimates of the prevalence of fecal shedding. Applied and Environmental Microbiology 2004; 70: 57375743.
19. Robinson, SE, et al. Heterogeneous distributions of Escherichia coli O157 within naturally infected bovine faecal pats. FEMS Microbiology Letters 2005; 244: 291296.
20. Barkocy-Gallagher, GA, et al. Seasonal prevalence of Shiga toxin-producing Escherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. Journal of Food Protection 2003; 66: 19781986.
21. Heuvelink, AE, et al. Occurrence of verocytotoxin-producing Escherichia coli O157 on Dutch dairy farms. Journal of Clinical Microbiology 1998; 36: 34803487.
22. Edrington, TS, et al. Effects of exogenous melatonin and tryptophan on fecal shedding of E. coli O157:H7 in cattle. Microbial Ecology 2008; 55: 553560.
23. Edrington, TS, et al. Seasonal shedding of Escherichia coli O157: H7 in ruminants: a new hypothesis. Foodborne Pathogens and Disease 2006; 3: 413421.
24. Cobbold, R, Desmarchelier, P. A longitudinal study of Shiga-toxigenic Escherichia coli (STEC) prevalence in three Australian dairy herds. Veterinary Microbiology 2000; 71: 125137.
25. Kondo, S, et al. Longitudinal prevalence and molecular typing of Escherichia coli O157:H7 by use of multiple-locus variable-number tandem-repeat analysis and pulsed-field gel electrophoresis in fecal samples collected from a range-based herd of beef cattle in California. American Journal of Veterinary Research 2010; 71: 13391347.
26. Lammers, GAC, et al. Synchronization of E. coli O157 shedding in a grass-fed beef herd: a longitudinal study. Epidemiology and Infection 2015; 143: 32443255.
27. Paton, AW, Paton, JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfb O111, and rfb O157. J Clinic Microbiol 1998; 36: 598602.
28. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2013 (http://www.R-project.org/).
29. Gautam, R, et al. Transmission of Escherichia coli O157:H7 in cattle is influenced by the level of environmental contamination. Epidemiology and Infection 2015; 143: 274287.
30. Low, JC, et al. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Applied and Environmental Microbiology 2005; 71: 9397.
31. Mellor, GE, et al. Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Applied and Environmental Microbiology 2013; 79: 50505058.
32. Liebana, E, et al. Genetic diversity among Escherichia coli O157:H7 isolates from bovines living on farms in England and Wales. Journal of Clinical Microbiology 2003; 41: 38573860.
33. Matthews, L, et al. Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proceedings of the National Academy of Sciences USA 2006; 103: 547552.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed