Skip to main content Accessibility help
×
Home

Cyclic patterns in the central European tick-borne encephalitis incidence series

  • P. ZEMAN (a1)

Summary

Tick-borne encephalitis (TBE) is peculiar due to its unstable dynamics with profound inter-annual fluctuations in case numbers – a phenomenon not well understood to date. Possible reasons – apart from variable human contact with TBE foci – include external factors, e.g. climatic forcing, autonomous oscillations of the disease system itself, or a combined action of both. Spectral analysis of TBE data from six regions of central Europe (CE) revealed that the ostensibly chaotic dynamics can be explained in terms of four superposed (quasi-)periodical oscillations: a quasi-biennial, triennial, pentennial, and a decadal cycle. These oscillations exhibit a high degree of regularity and synchrony across CE. Nevertheless, some amplitude and phase variations are responsible for regional differences in incidence patterns. In addition, periodic changes occur in the degree of synchrony in the regions: marked in-phase periods alternate with rather off-phase periods. Such a feature in the disease dynamics implies that it arises as basically diverging self-oscillations of local disease systems which, at intervals, receive synchronizing impulses, such as periodic variations in food availability for key hosts driven by external factors. This makes the disease dynamics synchronized over a large area during peaks in the synchronization signal, shifting to asynchrony in the time in between.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cyclic patterns in the central European tick-borne encephalitis incidence series
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cyclic patterns in the central European tick-borne encephalitis incidence series
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cyclic patterns in the central European tick-borne encephalitis incidence series
      Available formats
      ×

Copyright

Corresponding author

*Address for correspondence: Dr P. Zeman, Na dlazdence 37, 18200, Prague 8, Czech Republic. (Email: zeman3@post.cz)

References

Hide All
1. Mansfield, KL, et al. Tick-borne encephalitis virus – a review of an emerging zoonosis. Journal of General Virology 2009; 90: 17811794.
2. Labuda, M, et al. Tick-borne encephalitis virus transmission between tick cofeeding on specific immune natural hosts. Virology 1997; 235: 138143.
3. Kunze, U, et al. Tick-borne encephalitis – a notifiable disease, a review after one year. Ticks and Tick-borne Diseases 2014; 3: 453456.
4. Dumpis, U, Crook, D, Oksi, J. Tick-borne encephalitis. Clinical Infectious Diseases 1999; 28: 882890.
5. Heinz, FX, et al. Vaccination and tick-borne encephalitis, Central Europe. Emerging Infectious Diseases 2013; 19: 6976.
6. Labuda, M, Randolph, SE. Survival strategy of tick-borne encephalitis virus: cellular basis and environmental determinants. Zentralblatt für Bakteriologie 1999; 289: 513524.
7. Korenberg, EI, Kovalevskii, YV. Main features of tick-borne encephalitis eco-epidemiology in Russia. Zentralblatt für Bakteriologie 1999; 289: 525539.
8. Süss, J, et al. TBE incidence versus virus prevalence and increased prevalence of the TBE virus in Ixodes ricinus removed from humans. International Journal of Medical Microbiology 2006; 296 (S1): 6368.
9. Okulova, NM, et al. Correlations of tick-borne encephalitis incidence with some natural factors in the Primorye territory [in Russian]. Zhurnal Mikrobiologii Epidemiologii Immunologii 1982; 1: 6367.
10. Zeman, P, Benes, C. A tick-borne encephalitis ceiling in Central Europe has moved upwards during the last 30 years: possible impact of global warming? International Journal of Medical Microbiology 2004; 293 (Suppl. 37): 4854.
11. Moshkin, MP, et al. Epidemiology of a tick-borne viral infection: theoretical insights and practical implications for public health. BioEssays 2009; 31: 620628.
12. Palo, RT. Tick-borne encephalitis transmission risk: its dependence on host population dynamics and climate effects. Vector-Borne and Zoonotic Diseases 2014; 14: 346352.
13. Kiffner, C. et al. Determinants of tick-borne encephalitis in counties of southern Germany, 2001–2008. International Journal of Health Geography 2010; 9: 42.
14. Knap, N, Avsic-Zupanc, T. Correlation of TBE incidence with red deer and roe deer abundance in Slovenia. PLoS ONE 2013; 8: e66380.
15. Haemig, PD, et al. Forecasting risk of tick-borne encephalitis (TBE): Using data from wildlife and climate to predict next year's number of human victims. Scandinavian Journal of Infectious Diseases 2011; 43: 366372.
16. Randolph, SE, et al. Variable spikes in tick-borne encephalitis incidence in 2006 independent of variable tick abundance but related to weather. Parasites & Vectors 2008; 1: 44.
17. Robert Koch Institut. Epidemiological Infection Yearbook for Notifiable Diseases 2001–2013 (www.rki.de/DE/Content/Infekt/Jahrbuch).
18. Roggendorf, M, et al. Epidemiological situation of tick-borne encephalitis in Bavaria and Baden-Württemberg. In Süss, J, ed. Tick-borne Encephalitis and Lyme borreliosis. Disease Transmitted by Ticks. Schriesheim: Weller-Verlag, 1995, pp. 719.
19. Süss, J, et al. Tick-borne encephalitis (TBE) in Germany – Epidemiological data, development of risk areas and virus prevalence in field-collected ticks and ticks removed from humans. International Journal of Medical Microbiology 2004; 293 (Suppl. 37) 6979.
20. De Marval, F. Seroepidemiological study of tick-borne encephalitis and Lyme borreliosis in Switzerland (thesis). Switzerland: University Neuchatel, 1994, 182 pp.
21. Schuler, M, et al. Epidemiology of tick-borne encephalitis in Switzerland, 2005 to 2011. Eurosurveillance 2014; 19(13): pii = 20756.
22. Bundesamt für Gesundheit. Bulletin 52/13, 52/14 (http://www.bag.admin.ch/dokumentation/publikationen/).
23. Rothman, KJ, Greenland, S, Lash, TL. Modern Epidemiology. Philadelphia: Wolters Kluwer Health, and Lippincott: Williams and Wilkins, 2008, 758 pp.
24. Huang, NE, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London, Series A 1998; 454: 903995.
25. Schulz, M, Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computational Geosciences 2002; 28: 421426.
26. Torrence, C, Compo, GP. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 1998; 79: 6178.
27. Ahrabian, A, et al. Synchrosqueezing-based time-frequency analysis of multivariate data. Signal Processing 2015; 106: 331341.
28. Cazelles, B, Cazelles, K, Chavez, M. Wavelet analysis in ecology and epidemiology: impact of statistical tests. Journal of the Royal Society Interface 2014; 11: 20130585.
29. Martcheva, M, Prosper, O. Unstable dynamics of vector-borne diseases: modelling through delay-differential equations. In: Rao, VS, Durvasula, R, eds. Dynamic Models of Infectious Diseases. Vol. 1: Vector-borne Diseases. New York, Heidelberg, Dordrecht, London: Springer, 2013, pp. 4376.
30. Janson, NB. Non-linear dynamics of biological systems. Contemporary Physics 2012; 53: 137168.
31. Gray, JS. The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Reviews in Medical and Veterinary Entomology 1991; 79: 323333.
32. Randolph, SE. The impact of tick ecology on pathogen transmission dynamics. In: Bowman, AS, Nuttall, PA, eds. Ticks: Biology, Disease, and Control. Cambridge: Cambridge University Press, 2008, pp. 4072.
33. Finerty, JP. The Population Ecology of Cycles in Small Mammals, Mathematical Theory and Biological Fact. New Haven: Yale University Press, 1980, pp. 234.
34. Tkadlec, E, et al. Winter climate and plant productivity predict abundances of small herbivores in central Europe. Climate Research 2006; 32: 99108.
35. Keith, LB. Wildlife's Ten-year Cycle. Madison: University of Wisconsin Press, 1963, pp. 201.
36. Selas, V. Linking ‘10-year’ herbivore cycles to the lunisolar oscillation: the cosmic ray hypothesis. Oikos 2014; 123: 194202.
37. Leonova, GN, et al. Spacio-temporal structure of fluctuations in tick-borne encephalitis morbidity in the Maritime territory [in Russian]. Zhurnal Mikrobiologii Epidemiologii Immunologii 1988; 9: 5659.
38. Korotkov, YS, et al. Cyclic changes of Ixodes persulcatus density in the ‘Stolby’ Preserve [in Russian]. Medicinskaja Parazitologija i Parazitarnyje Bolezni 1992; 3: 710.
39. Ostfeld, RS, et al. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biology 2006; 4: e145.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Zeman supplementary material
Figures S1-S2

 Unknown (3.0 MB)
3.0 MB

Cyclic patterns in the central European tick-borne encephalitis incidence series

  • P. ZEMAN (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed