Skip to main content Accessibility help
×
×
Home

Co-receptor tropism and genetic characteristics of the V3 regions in variants of antiretroviral-naive HIV-1 infected subjects

  • J. L. Guo (a1), Y. Yan (a1), J. F. Zhang (a2), J. M. Ji (a1), Z. J. Ge (a1), R. Ge (a1), X. F. Zhang (a1), H. H. Wang (a1), Z. W. Chen (a1) and J. Y. Luo (a1)...

Abstract

Co-receptor tropism has been identified to correlate with HIV-1 transmission and the disease progression in patients. A molecular epidemiology investigation of co-receptor tropism is important for clinical practice and effective control of HIV-1. In this study, we investigated the co-receptor tropism on HIV-1 variants of 85 antiretroviral-naive patients with Geno2pheno algorithm at a false-positive rate of 10%. Our data showed that a majority of the subjects harboured the CCR5-tropic virus (81.2%, 69/85). No significant differences in gender, age, baseline CD4+ T-cell counts and transmission routes were observed between subjects infected with CXCR4-tropic or CCR5-tropic virus. The co-receptor tropism appeared to be associated with the virus genotype; a significantly more CXCR4-use was predicted in CRF01_AE infections whereas all CRF07_BC and CRF08_BC were predicted to use CCR5 co-receptor. Sequences analysis of V3 revealed a higher median net charge in the CXCR4 viruses over CCR5 viruses (4.0 vs. 3.0, P < 0.05). The predicted N-linked glycosylation site between amino acids 6 and 8 in the V3 region was conserved in CCR5 viruses, but not in CXCR4 viruses. Besides, variable crown motifs were observed in both CCR5 and CXCR4 viruses, of which the most prevalent motif GPGQ existed in both viral tropism and almost all genotypes identified in this study except subtype B. These findings may offer important implications for clinical practice and enhance our understanding of HIV-1 biology.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Co-receptor tropism and genetic characteristics of the V3 regions in variants of antiretroviral-naive HIV-1 infected subjects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Co-receptor tropism and genetic characteristics of the V3 regions in variants of antiretroviral-naive HIV-1 infected subjects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Co-receptor tropism and genetic characteristics of the V3 regions in variants of antiretroviral-naive HIV-1 infected subjects
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: J. Y. Luo, E-mail: luojianyong1116@sina.com

Footnotes

Hide All
*

These authors contributed equally in this study.

Footnotes

References

Hide All
1.Barre-Sinoussi, F et al. (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868871.
2.Anon. Joint United Nations Program on HIV/AIDS: Global HIV & AIDS statistics. Available at http://www.unaids.org/en/resources/fact-sheet (Accessed 21 November 2018).
3.Maartens, G, Celum, C and Lewin, SR (2014) HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 384, 258271.
4.Berger, EA et al. (1998) A new classification for HIV-1. Nature 391, 240.
5.Berger, EA, Murphy, PM and Farber, JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology 17, 657700.
6.Fatkenheuer, G et al. (2005) Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nature Medicine 11, 11701172.
7.Schuitemaker, H, van ‘t Wout, AB and Lusso, P (2011) Clinical significance of HIV-1 coreceptor usage. Journal of Translational Medicine 9(suppl. 1), S5.
8.Ghosn, J et al. (2017) CD4T cell decline following HIV seroconversion in individuals with and without CXCR4-tropic virus. Journal of Antimicrobial Chemotherapy 72, 2862.
9.Sierra-Enguita, R et al. (2014) X4 tropic viruses are on the rise in recent HIV-1 seroconverters in Spain. AIDS (London, England) 28, 1603.
10.Brumme, ZL et al. (2005) Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. The Journal of Infectious Diseases 192, 466474.
11.Chalmet, K et al. (2012) Presence of CXCR4-using HIV-1 in patients with recently diagnosed infection: correlates and evidence for transmission. Journal of Infectious Diseases 205, 174.
12.Phuphuakrat, A et al. (2014) Coreceptor tropism determined by genotypic assay in HIV-1 circulating in Thailand, where CRF01_AE predominates. HIV Medicine 15, 269275.
13.Li, X et al. (2014) Evidence that HIV-1 CRF01_AE is associated with low CD4 + T cell count and CXCR4 co-receptor usage in recently infected young men who have sex with men (MSM) in Shanghai, China. PLoS ONE 9, e89462.
14.Tsai, HC et al. (2015) Chemokine co-receptor usage in HIV-1-infected treatment-naive voluntary counselling and testing clients in Southern Taiwan. BMJ Open 5, e007334.
15.Sabrina Wai-Chi, T et al. (2013) Determination of the high prevalence of Dual/Mixed- or X4-tropism among HIV type 1 CRF01_AE in Hong Kong by genotyping and phenotyping methods. Aids Research & Human Retroviruses 29, 11231128.
16.Hwang, SS et al. (1991) Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253, 7174.
17.Susan, ZP (2004) Identifying epitopes of HIV-1 that induce protective antibodies. Nature Reviews Immunology 4, 199.
18.Jiao, Y et al. (2014) HIV-1 transmitted drug resistance-associated mutations and mutation co-variation in HIV-1 treatment-naive MSM from 2011 to 2013 in Beijing, China. BMC Infectious Diseases 14, 689.
19.Vandekerckhove, LP et al. (2011) European guidelines on the clinical management of HIV-1 tropism testing. The Lancet Infectious Diseases 11, 394407.
20.Cui, H et al. (2019) Rapid CD4 + T-cell decline is associated with coreceptor switch among MSM primarily infected with HIV-1 CRF01_AE in Northeast China. AIDS (London, England) 33, 1322.
21.Li, Y et al. (2014) CRF01_AE subtype is associated with X4 tropism and fast HIV progression in Chinese patients infected through sexual transmission. AIDS (London, England) 28, 521.
22.Anon. World Health Organization: HIV drug resistance report 2017. Available at https://www.who.int/hiv/pub/drugresistance/hivdr-report-2017/en/ (Accessed 27 November 2018).
23.Shepherd, JC et al. (2008) Emergence and persistence of CXCR4-tropic HIV-1 in a population of men from the multicentre AIDS cohort study. The Journal of Infectious Diseases 198, 11041112.
24.Richman, DD and Bozzette, SA (1994) The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. Journal of Infectious Diseases 169, 968974.
25.Tersmette, M et al. (1988) Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Journal of Virology 62, 20262032.
26.Panos, G and Watson, DC (2014) Effect of HIV-1 subtype and tropism on treatment with chemokine coreceptor entry inhibitors; overview of viral entry inhibition. Critical Reviews in Microbiology 41, 473.
27.Tsuchiya, K et al. (2013) Arginine insertion and loss of N-linked glycosylation site in HIV-1 envelope V3 region confer CXCR4-tropism. Scientific Reports 3, 2389.
28.Clevestig, P et al. (2006) CCR5 use by human immunodeficiency virus type 1 is associated closely with the gp120 V3 loop N-linked glycosylation site. Journal of General Virology 87, 607612.
29.Polzer, S et al. (2002) The N-linked glycan g15 within the V3 loop of the HIV-1 external glycoprotein gp120 affects coreceptor usage, cellular tropism, and neutralization. Virology 304, 7080.
30.Milich, L, Margolin, BH and Swanstrom, R (1997) Patterns of amino acid variability in NSI-like and SI-like V3 sequences and a linked change in the CD4-binding domain of the HIV-1 Env protein. Virology 239, 108118.
31.Coetzer, M et al. (2006) Genetic characteristics of the V3 region associated with CXCR4 usage in HIV-1 subtype C isolates. Virology 356, 95105.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Guo et al. supplementary material
Guo et al. supplementary material 1

 Word (21 KB)
21 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed