Skip to main content Accessibility help
×
Home

Conversion by corynephages and its role in the natural history of diphtheria

  • N. B. Groman (a1)

Summary

The conversion of non-toxinogenic Corynebacterium diphtheriae to toxinogeny has been reviewed. The biology of converting phage and the relationship of converting phages to nonconverting phages are summarized. The significance of these findings to the natural history and evolution of diphtheria is assessed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Conversion by corynephages and its role in the natural history of diphtheria
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Conversion by corynephages and its role in the natural history of diphtheria
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Conversion by corynephages and its role in the natural history of diphtheria
      Available formats
      ×

Copyright

References

Hide All
Barksdale, L. (1955). Sur quelques bactériophages de Corynebacterium diphtheriae at leurs hôtes. Compte rendu des séances de l' Académie des Sciences, Paris 240, 18311833.
Barksdale, L. (1982). In Immunology of Human Infection (ed. Nahmias, A. J. and O'Reilly, R. J.), pp. 171199. New York: Plenum.
Barksdalk, L., Linder, R., Sulea, I. T. & Pollice, M. (1981). Phospholipase D activity of Corynebacterium pseudotuberculosis (Corynebacterium oris) and Corynebacterium ulcerans, a distinctive marker within the genus Corynebacterium. Journal of Clinical Microbiology 13, 335343.
Barksdale, W. L. Jr & Pappenheimer, A. M., (1954). Phage-host relationships in non-toxigenic and toxigenic diphtheria bacilli. Journal of Bacteriology 67. 220232.
Buck, G. A. & Groman, N. B. (1981 a). Physical mapping of β-converting and γ-nonconverting corynebacteriophage genomes. Journal of Bacteriology 148, 131142.
Buck, G. A. & Groman, N. B. (1981 b). Genetic elements novel for Corynebacterium diphtheriae: specialized transducing elements and transposons. Journal of Bacteriology 148. 143152.
Buck, G. A. & Groman, N. B. (1981 c). Identification of DNA restriction fragments of β-converting corynebacteriophages that carry the gene for diphtheria toxin. Journal of Bacteriology 148. 153162.
Buck, G., Groman, N. & Falkow, S. (1978). Relationship between β converting and γ non-converting corynebacteriophage DNA, Nature, London 271, 683685.
Campbell, A. (1969). Episomes. New York: Harper & Row.
Campbell, A. (1981). Evolutionary significance of accessory DNA elements in bacteria. Annual Review of Microbiology 35, 5583.
Campbell, A. & Botstein, D. (1983). In Lambda II (ed. Hendrix, R. W., Roberts, J. W., Stahl, F. W. and Weisberg, R. A.), pp. 305380. New York: Cold Spring Harbor Laboratory.
Carne, H. R. (1968). Action of bacteriophages obtained from Corynebacterium diphtheriae on C. ulcerans and C. ovis. Nature, London 217, 10661067.
Costa, J. J., Michel, J. L., Rappuoli, R. & Murphy, J. R. (1981). Restriction of corynebacteriophage βc and βvir and physical localization of the diphtheria tox operon. Journal of Bacteriology 148, 124130.
Freeman, V. J. (1951). Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. Journal of Bacteriology 61, 675688.
Freeman, V. J. & Morse, I. U. (1952). Further observations on the change to virulence of bacteriophage-infected avirulent strains of Corynebacterium diphtheriae. Journal of Bacteriology 63, 407414.
Greenfield, L., Bjorn, M. J., Horn, G., Fong, D., Buck, G. A., Collier, R. J. & Kaplan, D. A. (1983). Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage. Proceedings of the National Academy of Sciences, U.S.A. 80, 68536857.
Groman, N. B. (1953). Evidence for the induced nature of the change from nontoxigenicity to toxigenicity in Corynebacterium diphtheriae as a result of exposure to specific bacteriophage. Journal of Bacteriology 66, 184191.
Groman, N. B. (1955). Evidence for the active role of bacteriophage in the conversion of nontoxigenic Corynebacterium diphtheriae to toxin production. Journal of Bacteriology 69, 915.
Groman, N. B. (1956). Conversion in Corynebacterium diphtheriae with phages originating from nontoxigenic strains. Virology 2, 843844.
Groman, N., Cianciotto, N., Bjorn, M. & Rabin, M. (1983). Detection and expression of DNA homologous to the tox gene in nontoxinogenic isolates of Corynebacterium diphtheriae. Infection and Immunity 42, 4856.
Groman, N. B. & Eaton, M. (1955). Genetic factors in Corynebacterium diphtheriae conversion. Journal of Bacteriology 70, 637640.
Groman, N. B., Eaton, M. & Booher, Z. K. (1958). Studies of mono- and polylysogenic Cornyebacterium diphtheriae. Journal of Bacteriology 75, 320325.
Groman, N. B. & Laird, W. (1977). Bacteriophage production by doubly lysogenic Corynebacterium diphtheriae. Journal of Virology 23, 592598.
Groman, N. B. & Memmer, R. (1958). Lysogeny and conversion in milis and miis-like Corynebacterium diphtheriae. Journal of General Microbiology 19, 634644.
Groman, N. B. & Rabin, M. (1980). Superinfection exclusion by heteroimmune corynebacteriophages. Journal of Virology 36, 526532.
Groman, N. B. & Rabin, M. (1982). Gene responsible forsuperinfection exclusion of heteroimmune corynebacteriophage. Journal of Virology 42, 4954.
Holmes, R. K. (1976). Characterization and genetic mapping of nontoxinogenic (tox) mutants of corynebacteriophage beta. Journal of Virology 19, 195207.
Holmes, R. K. & Barksdale, L. (1969). Genetic analysis of tox + and tox bacteriophages of Corynebacterium diphlheriae. Journal of Virology 3, 586598.
Holmes, R. K. & Barksdale, L. (1970). Comparative studies with tox + and tox corynebacteriophages. Journal of Virology 5, 783794.
Kaczorek, M., Delpeyroux, F., Chenciner, N., Streeck, R. E., Murphy, J. R., Boquet, P. & Tiollais, P. (1983). Nucleotide sequence and expression of diphtheria tox228 gene in Escherichia coli. Science 221, 855858.
Keddie, R. M. & Bousfield, I. J. (1980). In Microbial Classification and Identification (ed. Goodfellow, M. and Board, R. G.), pp. 167188. London: Academic Press.
Laird, W. & Groman, N. B. (1976 a). Prophage map of converting corynebacteriophnge beta. Journal of Virology 19, 208219.
Laird, W. & Groman, N. B. (1976 b). Isolation and characterization of tox mutants of corynebacteriophage beta. Journal of Virology 19, 220227.
Laird, W. & Groman, N. B. (1976 c). Orientation of the tox gene in the prophage of corynebacteriophage beta. Journal of Virology 19, 228231.
Leong, D., Coleman, K. D. & Murphy, J. R. (1983). Cloned fragment A of diphtheria toxin is expressed and secreted in the periplasmic space of Escherichia coli K12. Science 220, 515517.
Maximescu, P. (1968). New host-strains for the lysogenic Corynebacterium diphtheriae Park Williams No. 8 strain. Journal of General Microbiology 53, 125133.
Maximescu, P. (1978). Studies on the PW 8 phage of the Park Williams No. 8 strain of C. diphtheriae and on species within Corynebacterium genus capable of producing diphtherial toxin. Archives roumaines de pathologie experimental el de microbiologie 37, 180190.
Maximescu, P., Oprisan, A., Pop, A. & Potorac, E. (1974). Further studies on Corynebacterium species capable of producing diphtheria toxin (C. diphtheriae, C. ulcerans, C. ovis). Journal of General Microbiology 82, 4956.
Michel, J. L., Rappuoli, R., Murphy, J. R. & Pappenheimer, A. M. Jr, (1982). Restriction endonuclease map of the nontoxigenic corynephage γc and its relationship to the toxigenic corynephage βc. Journal of Virology 42, 510518.
Murphy, J. R., Pappenheimer, A. M. Jr & Tayart de Borms, S. (1974). Synthesis of diphtheria tox gene products in Escherichia coli extracts. Proceedings of the National Academy of Sciences, U.S.A. 71, 1115.
Pappenheimer, A. M. Jr, (1982). Diphtheria: studies on the biology of an infectious disease. The Harvey Lectures, Series 76, 4573.
Pappenheimer, A. M. Jr & Murphy, J. R. (1983). Studies on the molecular epidemiology of diphtheria. Lancet ii, 923926.
Parsons, E. I. (1955). Induction of toxigenicity in non-toxigenic strains of C. diphtheriae with bacteriophage derived from non-toxigenic strains. Proceedings of the Society for Experimental Biology and Medicine 90, 9193.
Rappuoli, R., Michel, J. L. & Murphy, J. R. (1983 a). Integration of corynebacteriophage βtox+, ωtox+and γtox- into two attachment sites on the Corynebacterium diphtheriae chromosome. Journal of Bacteriology 153, 12021210.
Rappuoli, R., Michel, J. L. & Murphy, J. R. (1983 b). Restriction endonuclease map of corynebacteriophage ωctox+ isolated from the Park-Williams No. 8 strain of Corynebacterium diphtheriae. Journal of Virology 45, 524530.
Ratti, G., Rappuoli, R. & Giannini, G. (1983). The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox +) genome. Nucleic Acids Research 11, 65896595.
Reanney, D. (1976). Extrachromosomal elements as possible agents of adaptation and development. Bacteriological Review 40, 552590.
Roberts, J. W. & Devoret, R. (1983). In Lambda II(ed. Hendrix, R. W., Roberts, J. W., Stahl, F. W. and Weisberg, R. A.), pp. 123144. New York: Cold Spring Harbor Laboratory.
Saragea, A., Meiter, T. E. & Bica-Popii, V. (1966). Lysogenisation et conversion toxinogène chez Corynebacterium diphtheriae par des phages provenant de corynebacteries d'origine animale. Annales de l'Institut Pasteur, Paris 111, 171179.
Schiller, J., Strom, M., Groman, N. & Coyle, M. (1983). Relationship between pNG2, an Emr plasmid in Corynebacterium diphtheriae, and plasmids in aerobic skin coryneforms. Antimicrobial Agents and Chemotherapy 24, 892901.
Singer, R. A. (1976). In Mechanisms in Toxinology (ed. Bemheimer, A. W.), pp. 3251. New York: Wiley.
Tweten, R. K. & Collier, R. J. (1983). Molecular cloning and expression of gene fragments from corynebacteriophage β encoding enzymatically active peptides of diphtheria toxin. Journal of Bacteriology 156. 680685.
Uchida, T., Gill, D. M. & Pappenheimer, A. M. Jr, (1971). Mutation in the structural gene for diphtheria toxin carried by temperate phage β. Nature, London 233, 811.

Conversion by corynephages and its role in the natural history of diphtheria

  • N. B. Groman (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed