Skip to main content Accessibility help
×
×
Home

Clinical predictors of methicillin-resistance and their impact on mortality associated with Staphylococcus aureus bacteraemia

  • Y. M. Wi (a1), J. Y. Rhee (a2), C. I. Kang (a3), D. R. Chung (a3), J. H. Song (a3) and K. R. Peck (a3)...

Abstract

We investigated the clinical predictors of methicillin-resistance and their impact on mortality in 371 patients with Staphylococcus aureus bacteraemia identified from two prospective multi-centre studies. Methicillin resistant S. aureus (MRSA) accounted for 42.2% of community-onset and 74.5% of hospital-onset cases. No significant clinical difference was found between patients infected with MRSA vs. methicillin-sensitive S. aureus (MSSA), except that the former were more likely to have had hospital-onset bacteraemia and received antibiotics in the preceding 90 days. After stratifying according to the acquisition site, prior antibiotic use was the only independent predictor of having MRSA in both community-onset and hospital-onset cases. The frequency of inappropriate empirical antibiotic therapy was higher in patients with MRSA than in those with MSSA bacteraemia. However, methicillin resistance was not a predictor of mortality in patients and the clinical characteristics and outcomes of both MRSA and MSSA bacteraemia were similar. This study indicates that there are no definitive clinical or epidemiological risk factors which could distinguish MRSA from MSSA cases with the exception of the previous use of antibiotics for having MRSA bacteraemia, which emphasises the prudent use of glycopeptide treatment of patients at risk for invasive MRSA infections.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Clinical predictors of methicillin-resistance and their impact on mortality associated with Staphylococcus aureus bacteraemia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Clinical predictors of methicillin-resistance and their impact on mortality associated with Staphylococcus aureus bacteraemia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Clinical predictors of methicillin-resistance and their impact on mortality associated with Staphylococcus aureus bacteraemia
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: K. R. Peck, E-mail: krpeck@skku.edu

References

Hide All
1.Uslan, DZ et al. (2007) Age- and sex-associated trends in bloodstream infection: a population-based study in Olmsted County, Minnesota. Archives of Internal Medicine 167, 834839.
2.Laupland, KB et al. (2004) Severe bloodstream infections: a population-based assessment. Critical Care Medicine 32, 992997.
3.Khatib, R et al. (2009) Persistent Staphylococcus aureus bacteremia: incidence and outcome trends over time. Scandinavian Journal of Infectious Diseases 41, 49.
4.van Hal, SJ et al. (2012) Predictors of mortality in Staphylococcus aureus bacteremia. Clinical Microbiology Reviews 25, 362386.
5.David, MZ and Daum, RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews 23, 616687.
6.Song, JH et al. (2011) Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. Journal of Antimicrobial Chemotherapy 66, 10611069.
7.Brady, JM et al. (2007) Sporadic “transitional” community-associated methicillin-resistant Staphylococcus aureus strains from health care facilities in the United States. Journal of Clinical Microbiology 45, 26542661.
8.Cho, SY and Chung, DR. (2017) Infection prevention strategy in hospitals in the era of community-associated methicillin-resistant Staphylococcus aureus in the Asia-Pacific region: a review. Clinical Infectious Diseases; 64(Suppl. 2), S82S90.
9.Wi, YM et al. (2012) High vancomycin minimum inhibitory concentration is a predictor of mortality in meticillin-resistant Staphylococcus aureus bacteraemia. International Journal of Antimicrobial Agents 40, 108113.
10.Paul, M et al. (2010) Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. Journal of Antimicrobial Chemotherapy 65, 26582665.
11.Kim, SH et al. (2008) Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrobial Agents and Chemotherapy 52, 192197.
12.Chalmers, JD et al. (2014) Healthcare-associated pneumonia does not accurately identify potentially resistant pathogens: a systematic review and meta-analysis. Clinical Infectious Diseases 58, 330339.
13.Aliberti, S et al. (2016) Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infectious Diseases 16, 13641376.
14.Forster, AJ et al. (2013) Patient-level factors associated with methicillin-resistant Staphylococcus aureus carriage at hospital admission: a systematic review. American Journal of Infection Control 41, 214220.
15.CLSI (2010) Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. CLSI document M100-S20. Wayne, PA: Clinical and Labortory Stanadards Institute.
16.Li, JS et al. (2000) Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clinical Infectious Diseases 30, 633638.
17.Friedman, ND et al. (2002) Health care – associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Annals of Internal Medicine 137, 791797.
18.McCabe, WR (1974) Gram-negative bacteremia. Advances in Internal Medicine 19, 135158.
19.Paterson, DL et al. (2004) Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clinical Infectious Diseases 39, 3137.
20.David, MZ et al. (2011) Methicillin-susceptible Staphylococcus aureus as a predominantly healthcare-associated pathogen: a possible reversal of roles? PLoS One 6, e18217.
21.Miller, LG et al. (2007) Clinical and epidemiologic characteristics cannot distinguish community-associated methicillin-resistant Staphylococcus aureus infection from methicillin-susceptible S. aureus infection: a prospective investigation. Clinical Infectious Diseases 44, 471482.
22.McCarthy, NL et al. (2010) Risk factors associated with methicillin resistance among Staphylococcus aureus infections in veterans. Infection Control and Hospital Epidemiology 31, 3641.
23.Jimenez, JN et al. (2013) A comparison of methicillin-resistant and methicillin-susceptible Staphylococcus aureus reveals no clinical and epidemiological but molecular differences. International Journal of Medical Microbiology 303, 7683.
24.Arias-Ortiz, PM et al. (2016) Risk factors for methicillin-resistant Staphylococcus aureus bacteremia: a multicenter matched case-control study. Biomedica: Revista del Instituto Nacional de Salud 36, 612619.
25.Lowy, FD (1998) Staphylococcus aureus infections. New England Journal of Medicine 339, 520532.
26.Brumfitt, W and Hamilton-Miller, J (1989) Methicillin-resistant Staphylococcus aureus. New England Journal of Medicine 320, 11881196.
27.Kaplan, SL et al. (2005) Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clinical Infectious Diseases 40, 17851791.
28.Fridkin, SK et al. (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. New England Journal of Medicine 352, 14361444.
29.Lee, JY et al. (2014) Bone and joint infection as a predictor of community-acquired methicillin-resistant Staphylococcus aureus bacteraemia: a comparative cohort study. Journal of Antimicrobial Chemotherapy 69, 19661971.
30.Yilmaz, M et al. (2016) Mortality predictors of Staphylococcus aureus bacteremia: a prospective multicenter study. Annals of Clinical Microbiology and Antimicrobials 15, 7.
31.Cosgrove, SE et al. (2005) The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infection Control and Hospital Epidemiology 26, 166174.
32.Blot, SI et al. (2002) Outcome and attributable mortality in critically Ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Archives of Internal Medicine 162, 22292235.
33.Mylotte, JM and Tayara, A (2000) Staphylococcus aureus bacteremia: predictors of 30-day mortality in a large cohort. Clinical Infectious Diseases 31, 11701174.
34.Castillo, JS et al. (2012) Mortality among critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia: a multicenter cohort study in Colombia. Revista Panamericana de Salud Publica 32, 343350.
35.Yaw, LK, Robinson, JO and Ho, KM (2014) A comparison of long-term outcomes after meticillin-resistant and meticillin-sensitive Staphylococcus aureus bacteraemia: an observational cohort study. Lancet Infectious Diseases 14, 967975.
36.Cosgrove, SE et al. (2003) Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clinical Infectious Diseases 36, 5359.
37.Lodise, TP and McKinnon, PS (2005) Clinical and economic impact of methicillin resistance in patients with Staphylococcus aureus bacteremia. Diagnostic Microbiology and Infectious Disease 52, 113122.
38.Reed, SD et al. (2005) Costs and outcomes among hemodialysis-dependent patients with methicillin-resistant or methicillin-susceptible Staphylococcus aureus bacteremia. Infection Control and Hospital Epidemiology 26, 175183.
39.Gasch, O et al. (2013) Predictive factors for mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infection: impact on outcome of host, microorganism and therapy. Clinical Microbiology and infection 19, 10491057.
40.Gasch, O et al. (2013) Predictive factors for early mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. Journal of Antimicrobial Chemotherapy 68, 14231430.
41.Marchaim, D et al. (2010) Case-control study to identify factors associated with mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. Clinical Microbiology and Infection 16, 747752.
42.Lodise, TP et al. (2003) Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clinical Infectious Diseases 36, 14181423.
43.Kim, SH et al. (2004) Outcome of inappropriate initial antimicrobial treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Journal of Antimicrobial Chemotherapy 54, 489497.
44.Khatib, R et al. (2006) Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. European Journal of Clinical Microbiology & Infectious Diseases 25, 181185.
45.Fang, CT et al. (2006) Early empirical glycopeptide therapy for patients with methicillin-resistant Staphylococcus aureus bacteraemia: impact on the outcome. Journal of Antimicrobial Chemotherapy 57, 511519.
46.Yoon, YK et al. (2016) Effects of inappropriate empirical antibiotic therapy on mortality in patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia: a propensity-matched analysis. BMC Infectious Diseases 16, 331.
47.Miller, CE et al. (2012) An association between bacterial genotype combined with a high-vancomycin minimum inhibitory concentration and risk of endocarditis in methicillin-resistant Staphylococcus aureus bloodstream infection. Clinical Infectious Diseases 54, 591600.
48.Holmes, NE et al. (2014) Genetic and molecular predictors of high vancomycin MIC in Staphylococcus aureus bacteremia isolates. Journal of Clinical Microbiology 52, 33843393.
49.Fowler, VG Jr. et al. (2007) Potential associations between hematogenous complications and bacterial genotype in Staphylococcus aureus infection. Journal of Infectious Diseases 196, 738747.
50.Park, KH et al. (2015) Community-associated MRSA strain ST72-SCCmecIV causing bloodstream infections: clinical outcomes and bacterial virulence factors. Journal of Antimicrobial Chemotherapy 70, 11851192.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed