Skip to main content Accessibility help
×
×
Home

Clinical characteristics, virulence factors and molecular typing of methicillin-resistant Staphylococcus aureus infections in Shenzhen City, China

  • L. HU (a1) (a2), Y. LI (a2), Y. LU (a2), J. D. KLENA (a3) (a4), Y. QIU (a2), Y. LIN (a2), M. JIANG (a2), X. SHI (a2), L. CHEN (a2), X. LIU (a2), H. MA (a2), J. CHENG (a2), S. WU (a3), B. KAN (a5) and Q. HU (a1) (a2)...

Summary

Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a serious hospital and community-acquired infection and some strains are associated with greater severity. We investigated the clinical variability and molecular characteristics of MRSA infections in Shenzhen, China through a study at nine sentinel hospitals from January to December 2014. MRSA infections were classified as community-associated (CA-MRSA), healthcare-associated (HA-MRSA), and healthcare-associated community-onset (HACO-MRSA). In total, 812 MRSA isolates were collected and 183 of these were selected for further study. Patients with HA-MRSA infections were generally of greater age compared to other groups. Distinct body site and clinical presentations were evident in infected patients, e.g. CA-MRSA (skin and soft tissue, 53%), HA-MRSA (respiratory tract, 22%; surgical site, 20%; trauma wounds, 20%) and HACO-MRSA (mastitis, 47%). In contrast to HA-MRSA, other categories of strains were significantly more susceptible to gentamicin, sulfamethoxazole/trimethoprim, and tetracycline. No resistance to vancomycin or linezolid was recorded. The predominant clonal lineage within each strain category was CC59-t437-SCCmec IV/V-agr I (CA, 51·4%; HA, 28·9%; HACO, 52·9%) which exhibited characteristics of a traditional CA clone together with agr I which is more often associated with HA clones. In conclusion, for the three categories of MRSA infections, there were significant differences in clinical characteristics of patients, but the predominant clone in each category shared a similar genetic background which suggests that transmission of MRSA strains has occurred between the community and hospitals in Shenzhen.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Clinical characteristics, virulence factors and molecular typing of methicillin-resistant Staphylococcus aureus infections in Shenzhen City, China
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Clinical characteristics, virulence factors and molecular typing of methicillin-resistant Staphylococcus aureus infections in Shenzhen City, China
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Clinical characteristics, virulence factors and molecular typing of methicillin-resistant Staphylococcus aureus infections in Shenzhen City, China
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr Q. Hu, Shenzhen Centre for Disease Control and Prevention, Shenzhen 518055, Guangdong Province, China. (Email: huqinghua03@163.com)

References

Hide All
1. Stryjewski, ME, Corey, GR. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clinical Infectious Diseases 2014; 58 (Suppl. 1): S1019.
2. Thompson, RL, Cabezudo, I, Wenzel, RP. Epidemiology of nosocomial infections caused by methicillin-resistant Staphylococcus aureus . Annals of Internal Medicine 1982; 97: 309317.
3. Chambers, HF. The changing epidemiology of Staphylococcus aureus? Emerging Infectious Diseases 2001; 7: 178182.
4. Moran, GJ, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. New England Journal of Medicine 2006; 355: 666674.
5. Klevens, RM, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Journal of the American Medical Association 2007; 298: 17631771.
6. Naimi, TS, et al. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. Journal of the American Medical Association 2003; 290: 29762984.
7. Benoit, SR, et al. Community strains of methicillin-resistant Staphylococcus aureus as potential cause of healthcare-associated infections, Uruguay, 2002–2004. Emerging infectious diseases 2008; 14: 12161223.
8. Lee, SM, et al. Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture. Antimicrobial Agents and Chemotherapy 2007; 51: 14971499.
9. Chua, K, et al. Antimicrobial resistance: not community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA)! A clinician's guide to community MRSA – its evolving antimicrobial resistance and implications for therapy. Clinical Infectious Diseases 2011; 52: 99114.
10. Otter, JA, French, GL. Community-associated meticillin-resistant Staphylococcus aureus: the case for a genotypic definition. Journal of Hospital Infection 2012; 81: 143148.
11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement, M100-S23. Clinical and Laboratory Standards Institute, Wayne, PA 2013.
12. McDonald, RR, et al. Development of a triplex real-time PCR assay for detection of Panton-Valentine leukocidin toxin genes in clinical isolates of methicillin-resistant Staphylococcus aureus . Journal of Clinical Microbiology 2005; 43: 61476149.
13. Shi, XL, et al. Application of real time fluorescent PCR technique in typing and screening of staphylococcal enterotoxin. Chinese Journal of Health Laboratory Technology 2011; 21: 17151717.
14. Chen, L, et al. Multiplex real-time PCR for rapid staphylococcal cassette chromosome mec typing. Journal of Clinical Microbiology 2009; 47: 36923706.
15. Enright, MC, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus . Journal of Clinical Microbiology 2000; 38: 10081015.
16. Strommenger, B, et al. spa Typing of Staphylococcus aureus as a frontline tool in epidemiological typing. Journal of Clinical Microbiology 2008; 46: 574581.
17. Peacock, SJ, et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus . Infection and Immunity 2002; 70: 49874996.
18. McDougal, LK, et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. Journal of Clinical Microbiology 2003; 41: 51135120.
19. Li, J, et al. Molecular and clinical characteristics of clonal complex 59 methicillin-resistant Staphylococcus aureus infections in Mainland China. PLOS ONE 2013; 8: e70602.
20. Li, S, et al. Clinical and molecular characteristics of community-acquired methicillin-resistant Staphylococcus aureus infections in Chinese neonates. Acta Pathologica Microbiologica et Immunologica Scandinavica 2015; 123: 2836.
21. Wu, D, et al. Epidemiology and molecular characteristics of community-associated methicillin-resistant and methicillin-susceptible Staphylococcus aureus from skin/soft tissue infections in a children's hospital in Beijing, China. Diagnostic Microbiology and Infectious Disease 2010; 67: 18.
22. Cheng, H, et al. Molecular and phenotypic evidence for the spread of three major methicillin-resistant Staphylococcus aureus clones associated with two characteristic antimicrobial resistance profiles in China. Journal of Antimicrobial Chemotherapy 2013; 68: 24532457.
23. Cheng, H, et al. Molecular typing and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus isolated from Guangzhou, China. Journal of Third Military Medical University 2013; 35: 696701.
24. Chen, CJ, Huang, YC. New epidemiology of Staphylococcus aureus infection in Asia. Clinical Microbiology and Infection 2014; 20: 605623.
25. Song, JH, et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. Journal of Antimicrobial Chemotherapy 2011; 66: 10611069.
26. Mediavilla, JR, et al. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Current Opinion in Microbiology 2012; 15: 588595.
27. Chao, G, et al. Phenotypic and genotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) from different sources in China. Foodborne Pathogens and Disease 2013; 10: 214221.
28. Boyle-Vavra, S, et al. Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel Staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. Journal of Clinical Microbiology 2005; 43: 47194730.
29. Pardos de la Gandara, M, et al. Molecular types of MRSA and MSSA strains causing skin and soft tissue infections and nasal colonization identified in community health centers in New York City. Journal of Clinical Microbiology 2015; 53: 26482658.
30. Yeung, M, et al. Identification of major clonal complexes and toxin producing strains among Staphylococcus aureus associated with atopic dermatitis. Microbes and Infection 2011; 13: 189197.
31. Girou, E, et al. Selective screening of carriers for control of methicillin-resistant Staphylococcus aureus (MRSA) in high-risk hospital areas with a high level of endemic MRSA. Clinical Infectious Diseases 1998; 27: 543550.
32. Lucet, JC, et al. Prevalence and risk factors for carriage of methicillin-resistant Staphylococcus aureus at admission to the intensive care unit: results of a multicenter study. Archives of Internal Medicine 2003; 163: 181188.
33. Thompson, DS. Methicillin-resistant Staphylococcus aureus in a general intensive care unit. Journal of the Royal Society of Medicine 2004; 97: 521526.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Hu supplementary material
Hu supplementary material

 Unknown (488 KB)
488 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed