Skip to main content Accessibility help
×
Home

Classification of temporal profiles of F4+ E. coli shedding and faecal dry matter in experimental post-weaning diarrhoea of pigs

  • P. L. GEENEN (a1) (a2), J. Van der MEULEN (a1), A. BOUMA (a3), B. ENGEL (a1), J. A. P. HEESTERBEEK (a3) and M. C. M. De JONG (a1) (a2)...

Summary

Enterotoxigenic F4+ Escherichia coli can colonize the intestine of pigs and cause diarrhoea. Our primary goal was to find a discriminant rule to discriminate between F4+ E. coli shedding profiles as this may reflect differences in the infectiousness of pigs. Our secondary goal was to find a discriminant rule to discriminate between diarrhoeic and non-diarrhoeic pigs. Repeated measurements (bacterial shedding and percentage dry matter of faeces) were taken of 74 weaned pigs that were infected experimentally with F4+ E. coli. These measurements were summarized into two new variables by means of a principal components analysis. Discriminant rules were derived based on these summary variables by fitting a mixture of normal distributions. Finally, the association between the classifications (as derived from the discriminant rules) and the occurrence in the pigs of the F4 receptor, an adhesion site for F4+ E. coli, was studied. We found that only the classification based on bacterial shedding allowed us to distinguish two significantly different groups of pigs (high and low shedders). Presence of the F4 receptor was associated strongly with pigs being high shedders.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Classification of temporal profiles of F4+ E. coli shedding and faecal dry matter in experimental post-weaning diarrhoea of pigs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Classification of temporal profiles of F4+ E. coli shedding and faecal dry matter in experimental post-weaning diarrhoea of pigs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Classification of temporal profiles of F4+ E. coli shedding and faecal dry matter in experimental post-weaning diarrhoea of pigs
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr P. L. Geenen, Department of Information and Computing Sciences, Utrecht University, PO Box 80.089, 3508 TB Utrecht. (Email address: petra.geenen@tiscali.nl)

References

Hide All
1. Nagy, B, Casey, TA, Moon, HW. Phenotype and genotype of Escherichia coli isolated from pigs with post weaning diarrhea in Hungary. Journal of Clinical Microbiology 1990; 28: 651653.
2. Wittig, W, et al. Prevalence of the fimbrial antigens F18 and K88 and of enterotoxins and verotoxins among E. coli isolated from weaned pigs. Zentralblatt für Bakteriologie 1995; 283: 95104.
3. Frydendahl, K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Veterinary Microbiology 2002; 85: 169182.
4. Amass, SF, et al. Mechanical transmission of Enterotoxigenic Escherichia coli to weaned pigs by people, and biosecurity procedures that prevented such transmission. Journal of Swine Health Production 2003; 11: 6168.
5. Jones, GW, Rutter, JM. Role of the K88 antigen in the pathogenesis of neonatal diarrhea caused by Escherichia coli in piglets. Infection and Immunity 1972; 6: 918927.
6. Wijeratne, WVS, Crossman, PJ, Gould, CM. Evidence of sire effect on piglet mortality. British Veterinary Journal 1970; 126: 9499.
7. Rutter, JM, et al. A genetic basis for resistance to enteric disease caused by E. coli. Nature 1975; 257: 135136.
8. Hampson, DJ, Hinton, M, Kidder, DE. Coliform numbers in the stomach and small intestine of healthy pigs following weaning at three weeks of age. Journal of Comparative Pathology 1985; 95: 353362.
9. Madec, F, et al. Experimental models of porcine post-weaning colibacillosis and their relationship to post-weaning diarrhoea and digestive disorders as encountered in the field. Veterinary Microbiology 2000; 72: 295310.
10. Sellwood, R, et al. Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders: the existence of two pig phenotypes. Journal of Medical Microbiology 1975; 8: 405411.
11. Sarmiento, JI, Casey, TA, Moon, HW. Postweaning diarrhoea in swine: experimental model of enterotoxigenic Escherichia coli infection. American Journal of Veterinary Research 1988; 49: 11541159.
12. Bijlsma, IG, et al. Different pig phenotypes affect adherence of Escherichia coli to jejunal brush borders by K88ab, K88ac, or K88ad antigen. Infection and Immunity 1982; 37: 891894.
13. Baker, DR, Billey, LO, Francis, DH. Distribution of K88 Escherichia coli-adhesive and nonadhesive phenotypes among pigs of four breeds. Veterinary Microbiology 1997; 54: 123132.
14. Nabuurs, MJ, Van Zijderveld, FG, De Leeuw, PW. Clinical and microbiological fieldstudies in The Netherlands of diarrhoea in pigs at weaning. Research in Veterinary Science 1993; 55: 7077.
15. Willemsen, PTJ, De Graaf, FK. Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microbial Pathogenesis 1992; 12: 367375.
16. Nabuurs, MJ, Hoogendoorn, A, van Zijderveld-van Bemmel, A. Effect of supplementary feeding during the sucking period on net absorption from the small intestine of weaned pigs. Research in Veterinary Science 1996; 61: 7277.
17. Kirkpatrick, M, Heckman, N. A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. Journal of Mathematical Biology 1989; 27: 429450.
18. Engel, B, van Reenen, CG, Buist, WG. Analysis of correlated series of repeated measurements: application to challenge data. Biometrical Journal 2003; 45: 866886.
19. Kingsolver, JG, Gomulkiewicz, R, Carter, PA. Variation, selection and evolution of function-valued traits. Genetica 2001; 112–113: 87104.
20. Peel, D, McLachlan, GJ. User's guide to EMMIX – version 1.3 (www.maths.uq.edu.au/~gjm), 1999. Accessed 9 June 2006.
21. McLachlan, GJ, Peel, D. Finite Mixture Models. New York: John Wiley, 2000.
22. Mardia, KV, Kent, JT, Bibby, JM. Multivariate Analysis. New York: Academic Press, 1979.
23. GenStat Committee. The Guide to GenStat, GenStat 5 release 4.21. Payne, RW ed. Oxford: VSN International Ltd, 2000.
24. Cox, E, et al. Experimental induction of diarrhoea in newly-weaned piglets. Journal of the Veterinary Medical Association 1991; 38: 418426.
25. Geenen, PL, et al. Estimating transmission parameters of F4+ E. coli for F4 receptor positive and negative piglets: one-to-one transmission experiment. Epidemiology and Infection 2004; 132: 10391048.
26. Merrell, DS, Camilli, A. Acid tolerance of gastrointestinal pathogens. Current Opinion in Microbiology 2002; 5: 5155.
27. Kudva, IT, Blanch, K, Hovde, CJ. Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry. Applied and Environmental Microbiology 1998; 64: 31663174.
28. Krsnik, B, et al. Experimental model of enterotoxigenic Escherichia coli infection in pigs: potential for an early recognition of colibacillosis by monitoring of behavior. Comparative Immunology, Microbiology and Infectious Diseases 1999; 22: 261273.

Classification of temporal profiles of F4+ E. coli shedding and faecal dry matter in experimental post-weaning diarrhoea of pigs

  • P. L. GEENEN (a1) (a2), J. Van der MEULEN (a1), A. BOUMA (a3), B. ENGEL (a1), J. A. P. HEESTERBEEK (a3) and M. C. M. De JONG (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed