Skip to main content Accessibility help
×
Home

Case–case analysis of Campylobacter and Salmonella – using surveillance data for outbreak investigations and monitoring routine risk factors

  • K. Pogreba-Brown (a1), P. O'Connor (a1), J. Matthews (a2), E. Barrett (a1) and M. L. Bell (a1)...

Abstract

Utilising routine surveillance data, this study presents a method for generating a baseline comparison that can be used in future foodborne outbreak investigations following a case–case methodology. Salmonella and Campylobacter cases (2012–2015) from Maricopa County, AZ were compared to determine differences in risk factors, symptoms and demographics. For foods and other risk factors, adjusted odds ratios were developed using Campylobacter as the reference. Comparisons were also made for three major Salmonella subtypes, Typhimurium, Enteritidis and Poona as compared with Campylobacter. Salmonella cases were younger, while Campylobacter cases were more Hispanic and female. Campylobacter cases reported consuming peppers, sprouts, poultry, queso fresco, eggs and raw nuts more and reported contact with animal products, birds, visiting a farm or dairy, owning a pet, a sick pet, swimming in a river, lake or pond, or handling multiple raw meats more. Salmonella cases reported visiting a petting zoo and contact with a reptile more. There were significant variations by Salmonella subtype in both foods and exposures. We recommend departments conduct this analysis to generate a baseline comparison and a running average of relevant odds ratios allowing staff to focus on trace-back of contaminated food items earlier in the outbreak investigation process.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Case–case analysis of Campylobacter and Salmonella – using surveillance data for outbreak investigations and monitoring routine risk factors
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Case–case analysis of Campylobacter and Salmonella – using surveillance data for outbreak investigations and monitoring routine risk factors
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Case–case analysis of Campylobacter and Salmonella – using surveillance data for outbreak investigations and monitoring routine risk factors
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: K. Pogreba-Brown, E-mail: kpogreba@email.arizona.edu

References

Hide All
1.Scallan, E et al. (2011) Foodborne illness acquired in the United States-Major pathogens. Emerging Infectious Diseases 17, 715.
2.Domingues, AR et al. (2012) Source attribution of human salmonellosis using a meta-analysis of case-control studies of sporadic infections-systematic review. Epidemiology and Infection 140, 959969.
3.Brunette, G (2017) Chapter 3 Infectious diseases related to travel: Campylobacteriosis. In Chief, E et al. (eds). CDC Yellow Book 2018: Health Information for International Travel. Atlanta: Centers for Disease Control and Prevention. Available at https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/campylobacteriosis.
4.CDC (2014) CDC Food Safety-Campylobacter. June 3.
5.Domingues, AR et al. (2012) Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection 140, 970981.
6.CDC (2017) Surveillance for Foodborne Outbreaks United States, 2015: Annual Report. Atlanta, GA.
7.CDC FDASN (FoodNet) (2014) 2014 FoodNet Annual Surveillance Report (Final Report). Atlanta, GA.
8.Gaulin, C et al. (2012) Escherichia coli O157:H7 outbreak linked to raw milk cheese in Quebec, Canada: use of exact probability calculation and casecase study approaches to foodborne outbreak investigation. Journal of Food Protection 75, 812818.
9.Krumkamp, R, Reintjes, R and Dirksen-Fischer, M (2008) Case-case study of a Salmonella outbreak: an epidemiologic method to analyse surveillance data. International Journal of Hygiene and Environmental Health 211, 163167.
10.Aiken, AM, Lane, C and Adak, GK (2010) Risk of Salmonella infection with exposure to reptiles in England, 2004–2007. Euro Surveillance: European Communicable Disease Bulletin 15, 19581.
11.Gillespie, IA et al. (2002) A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerging Infectious Diseases 8, 937942.
12.Wilson, N et al. (2008) Case-case analysis of enteric diseases with routine surveillance data: potential use and example results. Epidemiologic Perspectives & Innovations 5, 6.
13.Pogreba-Brown, K, Ernst, K and Harris, RB (2014) Case-case methods for studying enteric diseases: a review and approach for standardization. OA Epidemiology 7, 19.
14.McCarthy, N and Giesecke, J (1999) Case-case comparisons to study causation of common infectious diseases. International Journal of Epidemiology 28, 764768.
15.U.S. Census Bureau QuickFacts selected: Maricopa County, Arizona. Available at https://www.census.gov/quickfacts/fact/table/maricopacountyarizona/INC110215 (Accessed 21 August 2017).
16.Pogreba-Brown, K et al. (2015) Assessing risk factors of sporadic Campylobacter infection: a case-control study in Arizona. Epidemiology and Infection 144, 829839.
17.Neal, KR and Slack, RC (1997) Diabetes mellitus, anti-secretory drugs and other risk factors for campylobacter gastro-enteritis in adults: a case-control study. Epidemiology and Infection 119, 307311.
18.CDC (2017) Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet 2015 Surveillance Report (Final Data). Atlanta, Georgia: U.S. Department of Health and Human Services, CDC.
19.CDC (2015) Case Count Maps, Multistate Outbreak of Salmonella Poona Infections Linked to Imported Cucumbers. Available at https://www.cdc.gov/salmonella/poona-09-15/map.html (Accessed 21 August 2017).
20.CDC (2015) Multistate Outbreak of Salmonella Poona Infections Linked to Imported Cucumbers (Final Update), Multistate Outbreak of Salmonella Poona Infections Linked to Imported Cucumbers. Available at https://www.cdc.gov/salmonella/poona-09-15/index.html (Accessed 21 August 2017).
21.CDC (2013) An Atlas of Salmonella in the United States, 1968–2011: Laboratory-Based Enteric Disease Surveillance. Atlanta, Georgia: US Department of Health and Human Services, CDC.
22.Marder, E (2015) Routine Collection of Exposure Data From Sporadic Salmonellosis Cases - Foodborne Diseases Active Surveillance Network, 2014. Boston, MA: CSTE.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed