Skip to main content Accessibility help
×
Home

Carriage of virulence factors and molecular characteristics of Staphylococcus aureus isolates associated with bloodstream, and skin and soft tissue infections in children

  • T. LI (a1), X. YU (a2), J. XIE (a1), Y. XU (a1), Y. SHANG (a3), Y. LIU (a1), X. HUANG (a1), Z. QIN (a4), C. PARSONS (a4), L. HU (a5), C. SALGADO (a6), L. WANG (a1) and F. YU (a3)...

Summary

We investigated the virulence gene carriage and molecular type characteristics of Staphylococcus aureus isolates from bloodstream infections (BSIs) and skin and soft tissue infections (SSTIs) in children. A total of 71 isolates, 16 of which were methicillin-resistant S. aureus (MRSA), were investigated by PCR for virulence-associated gene profiles, sequence type and spa type. This revealed that 76·7% and 53·7% of the SSTI and BSI isolates, respectively, exhibited simultaneous carriage of ⩾10 virulence genes. Compared to BSI isolates, carriage rates for hla, hlb, cna, clfA, seb, sec and pvl genes were significantly higher in SSTI isolates. By contrast, carriage of eta, etb and sea was significantly higher for BSI isolates. Thirty-four sequence types (STs) and 36 spa types were identified in the 71 isolates and included 14 novel STs and four novel spa types. ST59-MRSA-IV/V-t437 was the most common clone in the MRSA isolates. We concluded that virulence determinants are widely distributed in isolates of S. aureus strains from children with BSIs and SSTIs, with an unexpectedly high rate in SSTI isolates. Future profiling of S. aureus virulence determinants may allow the prediction of severity and outcome for children with these infections.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Carriage of virulence factors and molecular characteristics of Staphylococcus aureus isolates associated with bloodstream, and skin and soft tissue infections in children
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Carriage of virulence factors and molecular characteristics of Staphylococcus aureus isolates associated with bloodstream, and skin and soft tissue infections in children
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Carriage of virulence factors and molecular characteristics of Staphylococcus aureus isolates associated with bloodstream, and skin and soft tissue infections in children
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr F. Yu, Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou, Medical College, Wenzhou 325000, China. (Email: wzjxyfy@163.com) [F. Yu] (Email: wzyxywlx@163.com) [L. Wang]

References

Hide All
1.Khairulddin, N, et al. Emergence of methicillin resistant Staphylococcus aureus (MRSA) bacteraemia among children in England and Wales, 1990–2001. Archives of Diseases of Childood 2004; 89: 378379.
2.Nilsson, IM, et al. Protection against Staphylococcus aureus sepsis by vaccination with recombinant staphylococcal enterotoxin A devoid of superantigenicity. Journal of Infectious Diseases 1999; 180: 13701373.
3.Becker, K, et al. Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. Journal of Clinical Microbiology 2003; 41: 14341439.
4.Heilmann, C. Adhesion mechanisms of staphylococci. Advances in Experimental Medicine and Biology 2011; 715: 105123.
5.Yu, F, et al. Virulence gene profiling and molecular characterization of hospital-acquired Staphylococcus aureus isolates associated with bloodstream infection. Diagnostic Microbiology and Infectious Diseases 2012; 74: 363368.
6.Milheirico, C, et al. Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 2007; 51: 33743377.
7.Kondo, Y, et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrobial Agents and Chemotherapy 2007; 51: 264274.
8.Koreen, L, et al. spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. Journal of Clinical Microbiology 2004; 42: 792799.
9.Enright, MC, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of Clinical Microbiology 2000; 38: 10081015.
10.Bubeck, Wardenburg J, et al. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infection and Immunity 2007; 75: 10401044.
11.Campbell, SJ, et al. Genotypic characteristics of Staphylococcus aureus isolates from a multinational trial of complicated skin and skin structure infections. Journal of Clinical Microbiology 2008; 46: 678684.
12.Yao, D, et al. Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections (SSTIs). BMC Infectious Diseases 2010; 10: 133.
13.Ferry, T, et al. Comparative prevalence of superantigen genes in Staphylococcus aureus isolates causing sepsis with and without septic shock. Clinical Infectious Diseases 2005; 41: 771777.
14.Josefsson, E, et al. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 1998; 144: 33873395.
15.Wu, D, et al. Epidemiology and molecular characteristics of community-associated methicillin-resistant and methicillin-susceptible Staphylococcus aureus from skin/soft tissue infections in a children's hospital in Beijing, China. Diagnostic Microbiology and Infectious Diseases 2010; 67: 18.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed