Skip to main content Accessibility help
×
Home

Basic reproduction number of coxsackievirus type A6 and A16 and enterovirus 71: estimates from outbreaks of hand, foot and mouth disease in Singapore, a tropical city-state

  • C. T. K. LIM (a1), L. JIANG (a1), S. MA (a1), L. JAMES (a1) and L. W. ANG (a1)...

Summary

Coxsackievirus A6 (CV-A6), coxsackievirus A16 (CV-A16) and enterovirus 71 (EV-A71) were the major enteroviruses causing nationwide hand, foot and mouth disease (HFMD) epidemics in Singapore in the last decade. We estimated the basic reproduction number (R 0) of these enteroviruses to obtain a better understanding of their transmission dynamics. We merged records of cases from HFMD outbreaks reported between 2007 and 2012 with laboratory results from virological surveillance. R 0 was estimated based on the cumulative number of reported cases in the initial growth phase of each outbreak associated with the particular enterovirus type. A total of 33 HFMD outbreaks were selected based on the inclusion criteria specified for our study, of which five were associated with CV-A6, 13 with CV-A16, and 15 with EV-A71. The median R 0 was estimated to be 5·04 [interquartile range (IQR) 3·57–5·16] for CV-A6, 2·42 (IQR 1·85–3·36) for CV-A16, and 3·50 (IQR 2·36–4·53) for EV-A71. R 0 was not significantly associated with number of infected children (P = 0·86), number of exposed children (P = 0·94), and duration of the outbreak (P = 0·05). These enterovirus-specific R 0 estimates will be helpful in providing insights into the potential growth of future HFMD epidemics and outbreaks for timely implementation of disease control measures, together with disease dynamics such as severity of the cases.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Basic reproduction number of coxsackievirus type A6 and A16 and enterovirus 71: estimates from outbreaks of hand, foot and mouth disease in Singapore, a tropical city-state
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Basic reproduction number of coxsackievirus type A6 and A16 and enterovirus 71: estimates from outbreaks of hand, foot and mouth disease in Singapore, a tropical city-state
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Basic reproduction number of coxsackievirus type A6 and A16 and enterovirus 71: estimates from outbreaks of hand, foot and mouth disease in Singapore, a tropical city-state
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Ms. L. W. Ang, Epidemiology and Disease Control Division, Ministry of Health Singapore, College of Medicine Building, 16 College Road, Singapore 169854. (Email: ang_li_wei@moh.gov.sg)

References

Hide All
1. Melnick, JL. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Fields, BN, Knipe, DM, Howley, PM, et al. , eds. Field's Virology, 3rd edn. Philadelphia: Lippincott-Raven Publishers; 1996, pp. 655712.
2. Lin, KH, et al. Evolution of EV71 genogroup in Taiwan from 1998 to 2005: an emerging of subgenogroup C4 of EV71. Journal of Medical Virology 2006; 78: 254262.
3. Solomon, T, et al. Virology, epidemiology, pathogenesism and control of enterovirus 71. Lancet Infectious Diseases 2010; 10: 778790.
4. Blomqvist, S, et al. Co-circulation of coxsackieviruses A6 and A10 in hand, foot and mouth disease in hand, foot and mouth disease outbreak in Finland. Journal of Clinical Virology 2010; 48: 4954.
5. Khetsuriani, N, et al. Enterovirus surveillance – United States, 1970–2005. Morbidity and Mortality Weekly Report Surveillance Summary 2006; 55: 121.
6. Bible, JM, et al. Genetic evolution of enterovirus 71: epidemiological and pathological implications. Reviews in Medical Virology 2007; 17: 371379.
7. Ooi, MH, et al. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurology 2010; 9: 10971105.
8. McMin, PC. An overview of the evoluation of enterovirus 71 and its clinical and public health significance. FEMS Microbiology Reviews 2002; 26: 91107.
9. Lee, MS, et al. An investigation of epidemic enterovirus 71 infection in Taiwan, 2008. Pediatric Infectious Disease Journal 2010; 29: 10301034.
10. Wang, Q, Wang, Z. Epidemiology of hand, foot and mouth disease in China, 2008. Disease Surveillance 2010; 25: 181184.
11. Zhang, Y, et al. An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand, foot and mouth disease in Fuyang city of China. Virology Journal 2010; 7: 94.
12. Ma, E, et al. The enterovirus 71 epidemic in 2008 – public health implications for Hong Kong. International Journal of Infectious Diseases 2010; 14: e775e780.
13. Tu, PV, et al. Epidemiologic and virologic investigation of hand, foot, and mouth disease, Southern Vietnam, 2005. Emerging Infectious Diseases 2007; 13: 17331741.
14. Wu, Y, et al. The largest outbreak of hand, foot and mouth disease in Singapore in 2008: the role of enterovirus 71 and coxsackievirus A strains. International Journal of Infectious Diseases 2010; 14: e10761081.
15. Chan, KP, et al. Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerging Infectious Diseases 2003; 9: 7885.
16. Lipsitch, M, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 2003; 300: 19661970.
17. Ward, MP, et al. Estimation of the reproductive number R 0 for epidemic, highly pathogenic avian influenza subtype H5N1 spread. Epidemiology and Infection 2004; 132: 291295.
18. Hsieh, YH, Fisman, DN, Wu, J. On epidemic modelling in real time: an application to the 2009 novel A(H1N1) influenza outbreak in Canada. BMC Research Notes 2010; 3: 283.
19. Hsieh, YH, Ma, S. Intervention measures, turning point, and reproduction number for dengue, Singapore, 2005. American Journal of Tropical Medicine and Hygiene 2009; 80: 6671.
20. Ma, E, et al. Estimation of the basic reproduction number of enterovirus 71 and coxsackievirus A16 in hand, foot, and mouth disease outbreaks. Pediatric Infectious Disease Journal 2011; 30: 675679.
21. Ang, LW, et al. The changing seroepidemiology of enterovirus 71 infection among children and adolescents in Singapore. BMC Infectious Diseases 2011; 11: 270.
22. Ang, LW, et al. Epidemiology and control of hand, foot and mouth disease in Singapore 2001–2007. Annals Academy Medicine of Singapore 2009; 38: 106112.
23. Ministry of Health, Singapore. Communicable diseases surveillance in Singapore 2012. Singapore: Ministry of Health, 2013.
24. Ooi, EE, Goh, KT. Surveillance of hand, foot and mouth disease in Singapore. In: Lin, RVTP, Goh, KT, eds. Enterovirus Infection in Singapore – with Particular Reference to the EV71 Outbreak in 2000. Institute of Environmental Epidemiology, Ministry of Environment, 2002, pp. 6683.
25. Heymann, DL. Coxsackievirus diseases. Control of Communicable Diseases Manual, 18th edn. Washington, DC: American Public Health Association, 2004, pp. 133135.
26. Wong, SS, et al. Human enterovirus 71 and hand, foot and mouth disease. Epidemiology and Infection 2010; 138: 10711089.
27. Ang, LW, et al. Seroepidemiology of coxsackievirus A6, coxsackievirus A16, and enterovirus 71 infections among children and adolescents in Singapore, 2008–2010. PLoS ONE 2015; 10: e0127999.
28. Anderson, RM, May, RM, Anderson, B. Infectious Diseases of Humans: Dynamics and Control (Oxford Science Publications). New York: Oxford University Press, 1992.
29. Ljubin-Sternak, S, et al. Outbreak of hand, foot and mouth disease caused by Coxsackie A16 virus in a childcare centre in Croatia, February to March 2011. Eurosurveillance 2011; 16: pii = 19875.
30. Ji, H, et al. Seroepidemiology of human enterovirus 71 and coxsackievirus A16 in Jiangsu province, China. Virology Journal 2012; 9: 248.
31. Lee, MS, et al. Incidence rates of enterovirus 71 infections in young children during a nationwide epidemic in Taiwan, 2008–09. PLoS Neglected Tropical Diseases 2012; 6: e1476.
32. Ministry of Health, Singapore. Hand, foot & mouth disease: updates. 2015 (https://www.moh.gov.sg/content/moh_web/home/diseases_and_conditions/h/hand_foot_mouth_disease.html). Accessed 17 February 2015.

Keywords

Basic reproduction number of coxsackievirus type A6 and A16 and enterovirus 71: estimates from outbreaks of hand, foot and mouth disease in Singapore, a tropical city-state

  • C. T. K. LIM (a1), L. JIANG (a1), S. MA (a1), L. JAMES (a1) and L. W. ANG (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed