Skip to main content Accessibility help
×
Home

Automated outbreak detection: a quantitative retrospective analysis

  • L. STERN (a1) and D. LIGHTFOOT (a2)

Abstract

An automated early warning system has been developed and used for detecting clusters of human infection with enteric pathogens. The method used requires no specific disease modelling, and has the potential for extension to other epidemiological applications. A compound smoothing technique is used to determine baseline ‘normal’ incidence of disease from past data, and a warning threshold for current data is produced by combining a statistically determined increment from the baseline with a fixed minimum threshold. A retrospective study of salmonella infections over 3 years has been conducted. Over this period, the automated system achieved >90% sensitivity, with a positive predictive value consistently >50%, demonstrating the effectiveness of the combination of statistical and heuristic methods for cluster detection. We suggest that quantitative measurements are of considerable utility in evaluating the performance of such systems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Automated outbreak detection: a quantitative retrospective analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Automated outbreak detection: a quantitative retrospective analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Automated outbreak detection: a quantitative retrospective analysis
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed