Skip to main content Accessibility help
×
Home

Attributing sporadic and outbreak-associated infections to sources: blending epidemiological data

  • D. COLE (a1), P. M. GRIFFIN (a1), K. E. FULLERTON (a1), T. AYERS (a2), K. SMITH (a3), L. A. INGRAM (a4), B. KISSLER (a5) and R. M. HOEKSTRA (a2)...

Summary

Common sources of shiga toxin-producing Escherichia coli (STEC) O157 infection have been identified by investigating outbreaks and by case-control studies of sporadic infections. We conducted an analysis to attribute STEC O157 infections ascertained in 1996 and 1999 by the Foodborne Diseases Active Surveillance Network (FoodNet) to sources. Multivariable models from two case-control studies conducted in FoodNet and outbreak investigations that occurred during the study years were used to calculate the annual number of infections attributable to six sources. Using the results of the outbreak investigations alone, 27% and 15% of infections were attributed to a source in 1996 and 1999, respectively. Combining information from both data sources, 65% of infections in 1996 and 34% of infections in 1999 were attributed. The results suggest that methods to incorporate data from multiple surveillance systems and over several years are needed to improve estimation of the number of illnesses attributable to exposure sources.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Attributing sporadic and outbreak-associated infections to sources: blending epidemiological data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Attributing sporadic and outbreak-associated infections to sources: blending epidemiological data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Attributing sporadic and outbreak-associated infections to sources: blending epidemiological data
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr D. Cole, DVM, PhD, Lead, Analytics Team, Enteric Diseases Epidemiology Branch, Division of Foodborne, Waterborne and Environmental Diseases, 1600 Clifton Rd, NE, MS C-09, Atlanta, GA 30333, USA. (Email: dcole@cdc.gov)

References

Hide All
1. Scallan, E, et al. Foodborne illness acquired in the United States – major pathogens. Emerging Infectious Diseases 2011; 17: 715.
2. Centers for Disease Control and Prevention (CDC). Foodborne outbreak online database. Atlanta, Georgia: U.S. Department of Health and Human Services, Center for Disease Control and Prevention (http://wwwn.cdc.gov/foodborneoutbreaks). Accessed 23 August 2011.
3. Alelis, KA, et al. Outbreak of Shiga toxin-producing Escherichia coli O157 infection associated with a day camp petting zoo – Pinellas County, Florida, May–June 2007. Morbidity and Mortality Weekly Report 2009; 58: 426428.
4. Yoder, J, et al. Surveillance for waterborne disease and outbreaks associated with drinking water and water not intended for drinking – United States, 2005–2006. Morbidity and Mortality Weekly Report 2008; 57: 3962.
5. CDC. Foodbome Diseases Active Surveillance Network (FoodNet): FoodNet surveillance report for 2008 (Final Report). Atlanta, Georgia: U.S. Department of Health and Human Services, CDC. 2010 (http://www.cdc.gov/foodnet/AR2008_508Compliant_v3_FINAL.pdf). Accessed 23 August 2011.
6. FoodNet. FoodNet surveillance report for 2009 (Final Report) (http://www.cdc.gov/foodnet/PDFs/FoodNetAR2009_FINAL.pdf). Accessed 22 November 2011.
7. Kassenborg, HD, et al. Farm visits and undercooked hamburgers as major risk factors for sporadic Escherichia coli O157:H7 infection: data from a case-control study in 5 FoodNet sites. Clinical Infectious Diseases 2004; 38: S271278.
8. Voetsch, AC, et al. Risk factors for sporadic Shiga toxin-producing Escherichia coli O157 infections in FoodNet sites, 1999–2000. Epidemiology and Infection 2007; 135: 9931000.
9. Benichou, J. A review of adjusted estimators of attributable risk. Statistical Methods in Medical Research 2001; 10: 195216.
10. Bruzzi, P, et al. Estimating the population attributable risk for multiple risk factors using case-control data. American Journal of Epidemiology 1985; 122: 904914.
11. Greenland, S, Robins, JM. Conceptual problems in the definition and interpretation of attributable fractions. American Journal of Epidemiology 1988; 128: 11851197.
12. Scallan, E. Activities, achievements, and lessons learned during the first 10 years of the Foodborne Diseases Active Surveillance Network: 1996–2005. Clinical Infectious Diseases 2007; 44: 718725.
13. Murphree, R, et al. Characteristics of foodborne outbreak investigations conducted by Foodborne Diseases Active Surveillance Network (FoodNet) sites, 2003–2008. Clinical Infectious Diseases 2012; 54: S498S503.
14. Knol, MJ, et al. What do case-control studies estimate? Survey of methods and assumptions in published case-control research. American Journal of Epidemiology 2008; 168: 10731081.
15. Levine, B. What does the population attributable fraction mean? Preventing Chronic Disease (www.cdc.gov/pcd/issues/2007/jan/pdf/06_0091.pdf). Published online 15 December 2006 . Accessed 28 June 2010.
16. Greenland, S. Attributable fractions: bias from broad definition of exposure. Epidemiology 2001; 12: 518520.
17. Rockhill, B, Newman, B, Weinberg, C. Use and misuse of population attributable fractions. American Journal of Public Health 1998; 88: 1519.
18. Steenland, K, Armstrong, B. An overview of methods for calculating the burden of disease due to specific risk factors. Epidemiology 2006; 17: 18.
19. Mølbak, K, Neimann, J. Risk factors for sporadic infection with Salmonella Enteritidis, Denmark, 1997–1999. American Journal of Epidemiology 2002; 156: 654661.
20. Rounds, JM, et al. Dynamics of Escherichia coli O157:H7 outbreak detection and investigation, Minnesota 2000–2008. Epidemiology and Infection 2012; 140: 14301438.
21. Food Safety Inspection Service. Meat preparation: color of cooked ground beef as it relates to doneness (http://www.fsis.usda.gov/factsheets/Color_of_Cooked_Ground_Beef/index.asp#1). Accessed 18 October 2011.
22. Naugle, AL, et al. Food Safety and Inspection Service regulatory testing program for Escherichia coli O157:H7 in raw ground beef. Journal of Food Protection 2005; 68: 462468.

Keywords

Attributing sporadic and outbreak-associated infections to sources: blending epidemiological data

  • D. COLE (a1), P. M. GRIFFIN (a1), K. E. FULLERTON (a1), T. AYERS (a2), K. SMITH (a3), L. A. INGRAM (a4), B. KISSLER (a5) and R. M. HOEKSTRA (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed