Skip to main content Accessibility help
×
Home

Associations between capsular serotype, multilocus sequence type, and macrolide resistance in Streptococcus agalactiae isolates from Japanese infants with invasive infections

  • M. MOROZUMI (a1), T. WAJIMA (a1), Y. KUWATA (a1), N. CHIBA (a1), K. SUNAOSHI (a2), K. SUGITA (a3), H. SAKATA (a4), S. IWATA (a5) and K. UBUKATA (a1)...

Summary

Streptococcus agalactiae (group B streptococcus; GBS) isolates (n = 150) from infants with invasive infections between 2006 and 2011 were analysed for capsular serotype, multilocus sequence type, and antibiotic susceptibility. In cases with late-onset disease (n = 115), primary meningitis was predominant (62·6%), but represented only 39·1% in cases with early-onset disease (n = 23). The most common serotype was III (58·7%), followed by Ia (21·3%) and Ib (12·7%). Sequence types (STs) of serotype III strains included ST17 (50·0%), ST19 (26·1%), ST335 (18·2%), ST27 (4·5%), and ST1 (1·1%). Predominant STs of serotypes Ia and Ib were ST23 (81·3%) and ST10 (84·2%), respectively. No penicillin-resistant strains were detected, but 22·0% of strains had mef(A/E), erm(A), or erm(B) genes, which mediate macrolide resistance. A new ST335, possessing an mef(A/E) gene belonging to clonal complex 19 gradually increased in frequency. Improved prevention of invasive GBS infections in infants requires timely identification, and ultimately vaccine development.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Associations between capsular serotype, multilocus sequence type, and macrolide resistance in Streptococcus agalactiae isolates from Japanese infants with invasive infections
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Associations between capsular serotype, multilocus sequence type, and macrolide resistance in Streptococcus agalactiae isolates from Japanese infants with invasive infections
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Associations between capsular serotype, multilocus sequence type, and macrolide resistance in Streptococcus agalactiae isolates from Japanese infants with invasive infections
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Professor K. Ubukata, Laboratory of Molecular Epidemiology for Infectious Agents, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan. (Email: ubukatak@lisci.kitasato-u.ac.jp)

References

Hide All
1. Holt, DE, et al. Neonatal meningitis in England and Wales: 10 years on. Archives of Disease in Childhood – Fetal and Neonatal Edition 2001; 84: F85F89.
2. Schuchat, A. Epidemiology of group B streptococcal disease in the United States: shifting paradigms. Clinical Microbiology Reviews 1998; 11: 497513.
3. Centers for Disease Control and Prevention. Prevention of perinatal group B streptococcal disease: a public health perspective. Morbidity and Mortality Weekly Report. Recommendations and Reports 1996; 45: 124.
4. Hansen, SM, et al. Dynamics of Streptococcus agalactiae colonization in women during and after pregnancy and in their infants. Journal of Clinical Microbiology 2004; 42: 8389.
5. Melchers, WJ, et al. Genetic analysis of Streptococcus agalactiae strains isolated from neonates and their mothers. FEMS Immunology and Medical Microbiology 2003; 36: 111113.
6. Tsolia, M, et al. Group B streptococcus colonization of Greek pregnant women and neonates: prevalence, risk factors and serotypes. Clinical Microbiology and Infection 2003; 9: 832838.
7. Schrag, S, et al. Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. Morbidity and Mortality Weekly Report. Recommendations and Reports 2002; 51: 122.
8. Centers for Disease Control and Prevention. Trends in perinatal group B streptococcal disease – United States, 2000–2006. Morbidity and Mortality Weekly Report 2009; 58: 109112.
9. Schrag, SJ, et al. Group B streptococcal disease in the era of intrapartum antibiotic prophylaxis. New England Journal of Medicine 2000; 342: 1520.
10. Verani, JR, et al. Prevention of perinatal group B streptococcal disease – revised guidelines from CDC, 2010. Morbidity and Mortality Weekly Report. Recommendations and Reports 2010; 59: 136.
11. Sakata, H. Evaluation of intrapartum antibiotic prophylaxis for the prevention of early-onset group B streptococcal infection. Journal of Infection and Chemotherapy 2012; 18: 853857.
12. Matsubara, K, Hoshina, K, Suzuki, Y. Early-onset and late-onset group B streptococcal disease in Japan: a nationwide surveillance study, 2004–2010. International Journal of Infectious Diseases. Published online: 7 January 2013 . doi: 10.1016/j.ijid.2012.11.027.
13. Davies, HD, et al. Population-based active surveillance for neonatal group B streptococcal infections in Alberta, Canada: implications for vaccine formulation. Pediatric Infectious Disease Journal 2001; 20: 879884.
14. Edmond, KM, et al. Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis. Lancet 2012; 379: 547556.
15. Persson, E, et al. Serotypes and clinical manifestations of invasive group B streptococcal infections in western Sweden 1998–2001. Clinical Microbiology and Infection 2004; 10: 791796.
16. Phares, CR, et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999–2005. Journal of the American Medical Association 2008; 299: 20562065.
17. Poyart, C, et al. Multiplex PCR assay for rapid and accurate capsular typing of B streptococci. Journal of Clinical Microbiology 2007; 45: 19851988.
18. Yao, K, et al. Capsular gene typing of Streptococcus agalactiae compared to serotyping by latex agglutination. Journal of Clinical Microbiology 2013; 51: 503507.
19. Jones, N, et al. Multilocus sequence typing system for group B streptococcus. Journal of Clinical Microbiology 2003; 41: 25302536.
20. Davies, HD, et al. Multilocus sequence typing of serotype III group B streptococcus and correlation with pathogenic potential. Journal of Infectious Diseases 2004; 189: 10971102.
21. Lamy, MC, et al. Rapid detection of the ‘highly virulent’ group B streptococcus ST-17 clone. Microbes and Infection 2006; 8: 17141722.
22. Lin, FY, et al. Phylogenetic lineages of invasive and colonizing strains of serotype III group B Streptococci from neonates: a multicenter prospective study. Journal of Clinical Microbiology 2006; 44: 12571261.
23. Martins, ER, et al. Analysis of group B streptococcal isolates from infants and pregnant women in Portugal revealing two lineages with enhanced invasiveness. Journal of Clinical Microbiology 2007; 45: 32243229.
24. Igarashi, Y, Mitsuhashi, N. Detection of Streptococcus agalactiae (GBS) and capsular types in prenatal vaginal specimens by real-time PCR as part of a neonatal GBS prevention strategy. Juntendo Medical Journal 2012; 58: 218223.
25. Wajima, T, et al. Distribution of emm type and antibiotic susceptibility of group A streptococci causing invasive and noninvasive disease. Journal of Medical Microbiology 2008; 57: 13831388.
26. Japan Society of Obstetrics and Gynecology (JSOG). Guidelines for obstetrical practice in Japan 2008 [in Japanese].
27. Shinjoh, M, et al. 2012. Childhood bacterial meningitis trends in Japan from 2009 to 2010 [in Japanese]. Kansenshogaku Zasshi 86: 582591.
28. Sunakawa, K, et al. 2010. Childhood bacterial meningitis trends in Japan from 2007 to 2008 [in Japanese]. Kansenshogaku Zasshi 84: 3341.
29. Japan Society of Obstetrics and Gynecology (JSOG). Guidelines for obstetrical practice in Japan 2011 [in Japanese].
30. Poyart, C, et al. Invasive group B streptococcal infections in infants, France. Emerging Infectious Diseases journal 2008; 14: 16471649.
31. Milligan, TW, et al. Association of elevated levels of extracellular neuraminidase with clinical isolates of type III group B streptococci. Infection and Immunity 1978; 21: 738746.
32. Adderson, EE, et al. Subtractive hybridization identifies a novel predicted protein mediating epithelial cell invasion by virulent serotype III group B Streptococcus agalactiae . Infection and Immunity 2003; 71: 68576863.
33. Schubert, A, et al. The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells. Infection and Immunity 2004; 72: 61976205.
34. Maisey, HC, et al. Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. Journal of Bacteriology 2007; 189: 14641467.
35. Bryan, JD, Shelver, DW. Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. Journal of Bacteriology 2009; 191: 18471854.
36. Gherardi, G, et al. Molecular epidemiology and distribution of serotypes, surface proteins, and antibiotic resistance among group B streptococci in Italy. Journal of Clinical Microbiology 2007; 45: 29092916.
37. Martins, ER, et al. Group B streptococci causing neonatal infections in Barcelona are a stable clonal population: 18-year surveillance. Journal of Clinical Microbiology. 2011; 49: 29112918.
38. Al, Safadi R, et al. Two-component system RgfA/C activates the fbsB gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B Streptococcus. PLoS One 2011; 6: e14658.
39. Seifert, KN, et al. A unique serine-rich repeat protein (Srr-2) and novel surface antigen (epsilon) associated with a virulent lineage of serotype III Streptococcus agalactiae . Microbiology 2006; 152: 10291040.
40. Springman, AC, et al. Selection, recombination, and virulence gene diversity among group B streptococcal genotypes. Journal of Bacteriology 2009; 191: 54195427
41. Sørensen, UB, et al. Emergence and global dissemination of host-specific Streptococcus agalactiae clones. MBio 2010; 1: e00178–10.
42. Kimura, K, et al. First molecular characterization of group B streptococci with reduced penicillin susceptibility. Antimicrobial Agents and Chemotherapy 2008; 52: 28902897.
43. Dahesh, S, et al. Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to beta-lactam antibiotics. Antimicrobial Agents and Chemotherapy 2008; 52: 29152918.

Keywords

Associations between capsular serotype, multilocus sequence type, and macrolide resistance in Streptococcus agalactiae isolates from Japanese infants with invasive infections

  • M. MOROZUMI (a1), T. WAJIMA (a1), Y. KUWATA (a1), N. CHIBA (a1), K. SUNAOSHI (a2), K. SUGITA (a3), H. SAKATA (a4), S. IWATA (a5) and K. UBUKATA (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed