Skip to main content Accessibility help
×
×
Home

Association between rs12252 and influenza susceptibility and severity: an updated meta-analysis

  • T. Chen (a1), M. Xiao (a2), J. Yang (a1), Y. K. Chen (a3), T. Bai (a1), X. J. Tang (a2) and Y. L. Shu (a1) (a3)...

Abstract

In several lately published studies, the association between single-nucleotide polymorphism (SNP, rs12252) of IFITM3 and the risk of influenza is inconsistent. To further understand the association between the SNP of IFITM3 and the risk of influenza, we searched related studies in five databases including PubMed published earlier than 9 November 2017. Ten sets of data from nine studies were included and data were analysed by Revman 5.0 and Stata 12.0 in our updated meta-analysis, which represented 1365 patients and 5425 no-influenza controls from four different ethnicities. Here strong association between rs12252 and influenza was found in all four genetic models. The significant differences in the allelic model (C vs. T: odds ratio (OR) = 1.35, 95% confidence interval (CI) (1.03–1.79), P = 0.03) and homozygote model (CC vs. TT: OR = 10.63, 95% CI (3.39–33.33), P < 0.00001) in the Caucasian subgroup were discovered, which is very novel and striking. Also novel discoveries were found in the allelic model (C vs. T: OR = 1.37, 95% CI (1.08–1.73), P = 0.009), dominant model (CC + CT vs. TT: OR = 1.48, 95% CI (1.08–2.02), P = 0.01) and homozygote model (CC vs. TT: OR = 2.84, 95% CI (1.36–5.92), P = 0.005) when we compared patients with mild influenza with healthy individuals. Our meta-analysis suggests that single-nucleotide T to C polymorphism of IFITM3 associated with increasingly risk of severe and mild influenza in both Asian and Caucasian populations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Association between rs12252 and influenza susceptibility and severity: an updated meta-analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Association between rs12252 and influenza susceptibility and severity: an updated meta-analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Association between rs12252 and influenza susceptibility and severity: an updated meta-analysis
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Author for correspondence: Y. L. Shu, E-mail: yshu@cnic.org.cn

Footnotes

Hide All
*

These authors contributed equally to the work.

Footnotes

References

Hide All
1.Li, H and Cao, B (2017) Pandemic and avian influenza A viruses in humans: epidemiology, virology, clinical characteristics, and treatment strategy. Clinics in Chest Medicine 38, 59.
2.Quang, VT et al. (2017) Social and economic burden of patients with influenza-like illness and clinically diagnosed flu treated at various health facilities in Vietnam. ClinicoEconomics & Outcomes Research 9, 423.
3.Gianino, MM et al. (2017) Estimation of sickness absenteeism among Italian healthcare workers during seasonal influenza epidemics. PLoS ONE 12, e0182510.
4.Wu, S et al. (2018) Mortality burden from seasonal influenza and 2009 H1N1 pandemic influenza in Beijing, China, 2007–2013. Influenza & Other Respiratory Viruses 12(1).
5.Worlds Health Organization (2016) Influenza (Seasonal) Fact Sheet. Available from http://www.who.int/mediacentre/factsheets/fs211/en/(Accessed 31 March 2017).
6.Fineberg, HV (2014) Pandemic preparedness and response – lessons from the H1N1 influenza of 2009. New England Journal of Medicine 370, 1335.
7.Dawood, FS et al. (2012) Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infectious Diseases 12, 687695.
8.Huang, IC et al. (2011) IFITM proteins mediate the innate immune response to influenza A H1N1 virus, West Nile virus and dengue virus. Cell 139, 1243.
9.Huang, IC et al. (2011) Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathogens 7, e1001258.
10.Li, K et al. (2013) IFITM proteins restrict viral membrane hemifusion. PLoS Pathogens 9, e1003124.
11.Desai, TM et al. (2014) IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathogens 10, e1004048.
12.Feeley, EM et al. (2011) IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathogens 7, e1002337.
13.Bailey, CC et al. (2012) Ifitm3 limits the severity of acute influenza in mice. PLoS Pathogens 8, e1002909.
14.Williams, DEJ et al. (2014) IFITM3 polymorphism rs12252-C restricts influenza A viruses. PLoS ONE 9, e110096.
15.Xuan, Y et al. (2015) IFITM3 rs12252 T>C polymorphism is associated with the risk of severe influenza: a meta-analysis. Epidemiology & Infection 143, 29752984.
16.Yang, X et al. (2015) Interferon-inducible transmembrane protein 3 genetic variant rs12252 and influenza susceptibility and severity: a meta-analysis. PLoS ONE 10, e0124985.
17.Everitt, AR et al. (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484, 519523.
18.Mills, TC et al. (2014) IFITM3 and susceptibility to respiratory viral infections in the community. Journal of Infectious Diseases 209, 1028.
19.López-Rodríguez, M et al. (2016) IFITM3 and severe influenza virus infection. No evidence of genetic association. European Journal of Clinical Microbiology 35, 1811–11817.
20.Randolph, AG et al. (2017) Evaluation of IFITM3 rs12252 association with severe pediatric influenza infection. Journal of Infectious Diseases 216, 14.
21.Lee, N et al. (2017) IFITM3, TLR3, and CD55 genes SNPs and cumulative Ge-netic risks for severe outcomes in Chinese patients with H7N9/H1N1pdm09 influenza. Journal of Infectious Diseases 216, 97.
22.Pan, Y et al. (2017) IFITM3 Rs12252-C variant increases potential risk for severe influenza virus infection in Chinese population. Frontiers in Cellular & Infection Microbiology 7, 294.
23.Wang, Z et al. (2014) Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proceedings of the National Academy of Sciences of the USA 111, 769774.
24.Zhang, YH et al. (2013) Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with severe influenza in Chinese individuals. Nature Communications 4, 1418.
25.David, S et al. (2017) Population genetics of IFITM3 in Portugal and Central Africa reveals a potential modifier of influenza severity. Immunogenetics 70, 19.
26.Worlds Health Organization. Influenza (Seasonal) Fact Sheet. [Reviewed January 2018] Available from: http://www.who.int/mediacentre/factsheets/fs211/en/.
27.Molinari, NA et al. (2007) The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25, 5086.
28.Kenney, AD et al. (2017) Human genetic determinants of viral diseases. Annual Review of Genetics 51(1).
29.Ciancanelli, MJ et al. (2016) Host genetics of severe influenza: from mouse Mx1 to human IRF7. Current Opinion in Immunology 38, 109120.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed