Skip to main content Accessibility help
×
×
Home

Phytoremediation of Mercury-Contaminated Mine Tailings by Induced Plant-Mercury Accumulation

  • Fabio N. Moreno (a1), Chris W. N. Anderson (a1), Robert B. Stewart (a1) and Brett H. Robinson (a2)

Abstract

In most contaminated soils and mine tailings, mercury (Hg) is not readily available for plant uptake. A strategy for inducing Hg mobilization in soils to increase accumulation potential in plants was investigated to enhance Hg phytoremediation. Accumulation of Hg in the nickel hyperaccumulator Berkheya coddii, the salt-tolerant Atriplex canescens, and the nonaccumulators Brassica juncea and Lupinus sp. was studied by pot trials containing mine tailings treated with either soluble Hg or sulfur-containing ligands. Accumulation of Hg in shoots of B. coddii and A. canescens after addition of soluble Hg was lower than 10 mg/kg dry weight. The addition of ammonium thiosulfate (NH4S2O3) to tailings mobilized Hg in substrates, as indicated by the elevated Hg concentrations in leachates from the pots of both species. Ammonium thiosulfate caused a significant increase in the Hg concentration in shoots of B. juncea. Conversely, Hg translocation to Lupinus sp. shoots was significantly reduced in the presence of this ligand. Mass balance calculations revealed a significant fraction of Hg was lost from the system. This unaccounted-for Hg may indicate Hg volatilization. The results suggest that there is potential for induced plant Hg accumulation for phytoremediation of Hg-contaminated sites. Issues of Hg leaching and volatilization, however, need to be addressed before this technology can be implemented in the field.

Copyright

Corresponding author

INR, Soil and Earth Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand; (e-mail) morenofabio@hotmail.com or Fabio.Moreno.1@uni.massey.ac.nz.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Environmental Practice
  • ISSN: 1466-0466
  • EISSN: 1466-0474
  • URL: /core/journals/environmental-practice
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed