Skip to main content Accessibility help

Vulnerability of megapodes (Megapodiidae, Aves) to climate change and related threats



Aspects of species life histories may increase their susceptibility to climate change. Owing to their exclusive reliance on environmental sources of heat for incubation, megapodes may be especially vulnerable. We employed a trait-based vulnerability assessment to weigh their exposure to projected climate variables of increasing temperatures, fluctuating rainfall and sea level rise and their biological sensitivity and capacity to adapt. While all 21 species were predicted to experience at least a 2 °C increase in mean annual temperature, 12 to experience a moderate or greater fluctuation in rainfall and 16 to experience rising seas, the most vulnerable megapodes are intrinsically rare and range restricted. Species that employ microbial decomposition for incubation may have an adaptive advantage over those that do not and may be more resilient to climate change. The moderate microclimate necessary for mound incubation, however, may in some areas be threatened by anthropogenic habitat loss exacerbated by warmer and seasonally drier conditions. As with many avian species, little is known about the capacity of megapodes to adapt to a changing climate. We therefore recommend that future research efforts investigate megapode fecundity, gene flow and genetic connectivity at the population level to better determine their adaptive capacity.


Corresponding author

*Correspondence: Paul M. Radley email:


Hide All
Baek, H. J., Lee, J., Lee, H. S., Hyun, Y. K., Cho, C., Kwon, W. T., Marzin, C., et al. (2013) Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Sciences 49 (5): 603618.
Barve, N., Bonilla, A. J., Brandes, J., Brown, J. C., Brunsell, N., Cochran, F. V., Crosthwait, R. J., et al. (2012) Climate-change and mass mortality events in overwintering monarch butterflies. Revista Mexicana De Biodiversidad 83 (3): 817824.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15 (4): 365377.
Bi, D., Dix, M., Marsland, S. J., O'Farrell, S., Rashid, H. A., Uotila, P., Hirst, A. C., et al. (2013) The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological and Oceanographic Journal 63 (1): 4164.
Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. (2014) Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions 20 (1): 19.
Brodie, J., Post, E. & Laurance, W. F. (2012) Climate change and tropical biodiversity: a new focus. Trends in Ecology & Evolution 27 (3): 145150.
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. (2008) Synergies among extinction drivers under global change. Trends in Ecology & Evolution 23 (8): 453460.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., et al. (2013) Sea level change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M., pp. 11371216. Cambridge, UK and New York, NY, USA: Cambridge University Press.
Cochrane, M. A. (2003) Fire science for rainforests. Nature 421 (6926): 913919.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., et al. (2013) Long-term climate change: projections, commitments, and irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, G. F., pp. 10291136. Cambridge, UK and New York, NY, USA: Cambridge University Press.
CSIRO and Bureau of Meteorology (2015) Climate Change in Australia: Information for Australia's Natural Resource Management Regions. Technical Report. Canberra, Australia: CSIRO and BOM.
Dawson, T. P., House, J. I., Prentice, I. C. & Mace, G. M. (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332 (6030): 664664.
Dekker, R. W. R. J., Fuller, R. A. & Baker, G. C. (2000) Megapodes: Status Survey and Action Plan 2000–2004. WPA/BirdLife/SSC Megapode Specialist Group. Gland, Switzerland and Reading, UK: IUCN and the World Pheasant Association.
Diffenbaugh, N. S. & Giorgi, F. (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114 (3–4): 813822.
Eiby, Y. & Booth, D. (2008) Embryonic thermal tolerance and temperature variation in mounds of the Australian brush-turkey (Alectura lathami). Auk 125 (3): 594599.
ESRI (2015) ArcGIS Desktop. Release 10.4. Redlands, CA, USA: Environmental Systems Research Institute.
Foden, W. & Young, B. E. (2016) IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change. Cambridge, UK and Gland, Switzerland: IUCN Species Survival Commission.
Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vie, J.-C., Akcakaya, H. R., Angulo, A., DeVantler, L. M., et al. (2013) Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8: e65427.
Fordham, D. A. & Brook, B. W. (2010) Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation 19 (2): 329342.
Gardali, T., Seavy, N. E., DiGaudio, R. T. & Comrack, L. A. (2012) A climate change vulnerability assessment of California's at-risk birds. PLoS ONE 7 (3): e29507.
Harris, R. B., Birks, S. M. & Leaché, A. D. (2014) Incubator birds: biogeographical origins and evolution of underground nesting in megapodes (Galliformes: Megapodiidae). Journal of Biogeography 41 (11): 20452056.
Harter, D. E. V., Irl, S. D. H., Seo, B., Steinbauer, M. J., Gillespie, R., Triantis, K. A., Fernández-Palacios, J. M., et al. (2015) Impacts of global climate change on the floras of oceanic islands – projections, implications and current knowledge. Perspectives in Plant Ecology, Evolution and Systematics 17 (2): 160183.
Hughes, A. C. (2017) Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8: e01624.
Imansyah, M. J., Jessop, T. S., Sumner, J., Purwandana, D., Ariefiandy, A. & Seno, A. (2009) Distribution, seasonal use, and predation of incubation mounds of orange-footed scrubfowl on Komodo Island, Indonesia. Journal of Field Ornithology 80 (2): 119126.
IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. (eds). Cambridge, UK: Cambridge University Press.
IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Core Writing Team, Pachauri, R. K. & Mayer, L. A.. Geneva, Switzerland: IPCC.
IUCN (2016) The IUCN Red List of Threatened Species. Version 2016.3 [www document]. URL
Jetz, W., Wilcove, D. S. & Dobson, A. P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology 5 (6): e157.
Jiguet, F., Gadot, A. S., Julliard, R., Newson, S. E. & Couvet, D. (2007) Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biology 13 (8): 16721684.
Jones, D. N. (1999) What we don't know about megapodes. Zoologische Verhandelingen 327: 159168.
Jones, D. N., Dekker, R. W. R. J. & Roselaar, C. S. (1995) The Megapodes. Oxford, UK: Oxford University Press.
Keppel, G., Morrison, C., Watling, D., Tuiwawa, M. V. & Rounds, I. A. (2012) Conservation in tropical Pacific Island countries: why most current approaches are failing. Conservation Letters 5 (4): 256265.
Kingsford, R. T. & Watson, J. E. M. (2011) Climate change in Oceania – a synthesis of biodiversity impacts and adaptations. Pacific Conservation Biology 17 (3): 270284.
Lovejoy, T. (2008) Climate change and biodiversity. OIE Revue Scientifique et Technique 27 (2): 331338.
O'Brien, M., Beaumont, D. J., Peacock, M. A., Hills, R. & Edwin, H. (2003) The Vanuatu Megapode Megapodius layardi Monitoring and Conservation. Sandy, UK: RSPB.
Saracco, J. F., Radley, P., Pyle, P., Rowan, E., Taylor, R. & Helton, L. (2016) Linking vital rates of landbirds on a tropical island to rainfall and vegetation greenness. PLoS ONE 11 (2): e0148570.
Sekercioglu, C. H., Primack, R. B. & Wormworth, J. (2012) The effects of climate change on tropical birds. Biological Conservation 148 (1): 118.
Simberloff, D. (2000) Extinction-proneness of island species – causes and management implications. Raffles Bulletin of Zoology 48 (1): 19.
Sinclair, J. R. (2001) Temperature regulation in mounds of three sympatric species of megapode (Aves: Megapodiidae) in Papua New Guinea: testing the ‘Seymour model’. Australian Journal of Zoology 49 (6): 675694.
Sinclair, J. R. (2002) Selection of incubation mound sites by three sympatric megapodes in Papua New Guinea. Condor 104 (2): 395406.
Sinclair, J. R., O'Brien, T. G. & Kinnaird, M. F. (2002) The selection of incubation sites by the Philippine Megapode, Megapodius cumingii, in North Sulawesi, Indonesia. Emu 102 (2): 151158.
Sivakumar, K. & Sankaran, R. (2012) Habitat preference of the Nicobar megapode Megapodius nicobariensis in the Great Nicobar Island, India. In: Eology of the Faunal Communities on the Andaman and Nicobar Islands, eds. Venkataraman, K., Raghunathan, C. & Sivaperuman, C., Berlin Heidelberg, Germany: Springer-Verlag.
Sodhi, N. S., Koh, L. P., Clements, R., Wanger, T. C., Hill, J. K., Hamer, K. C., Clough, Y., et al. (2010) Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biological Conservation 143 (10): 23752384.
Taylor, S. & Kumar, L. (2016) Global climate change impacts on Pacific Islands terrestrial biodiversity: a review. Tropical Conservation Science 9 (1): 203223.
Tingley, M. W., Koo, M. S., Moritz, C., Rush, A. C. & Beissinger, S. R. (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology 18 (11): 32793290.
Trenberth, K. E. (2011) Changes in precipitation with climate change. Climate Research 47 (1–2): 123138.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., et al. (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4 (4): 845872.
Wetzel, F. T., Beissmann, H., Penn, D. J. & Jetz, A. (2013) Vulnerability of terrestrial island vertebrates to projected sea-level rise. Global Change Biology 19 (7): 20582070.
Widlansky, M. J., Timmermann, A., Stein, K., McGregor, S., Schneider, N., England, M. H., Lengaigne, M., et al. (2013) Changes in South Pacific rainfall bands in a warming climate. Nature Climate Change 3 (4): 417423.
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6 (12): 26212626.


Vulnerability of megapodes (Megapodiidae, Aves) to climate change and related threats



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.