Skip to main content Accessibility help

Land Change Modelling to Inform Strategic Decisions on Forest Cover and CO2 Emissions in Eastern Madagascar

  • Jennifer Hewson (a1), Julie Hanta Razafimanahaka (a2), Timothy Max Wright (a1), Rina Mandimbiniaina (a3), Mark Mulligan (a4), Julia PG Jones (a5), Arnout Van Soesbergen (a4) (a6), Andry Andriamananjara (a7), Karyn Tabor (a1), Andriambolantsoa Rasolohery (a8), Herintsitohaina Razakamanarivo (a7), Mieja Razafindrakoto (a7), Andrisoa Rianahary (a7), Tantely Razafimbelo (a7), Ntsoa Ranaivoson (a7) and Celia A Harvey (a1) (a9)...


Decision-makers need readily accessible tools to understand the potential impacts of alternative policies on forest cover and greenhouse gas (GHG) emissions and to develop effective policies to meet national and international targets for biodiversity conservation, sustainable development and climate change mitigation. Land change modelling can support policy decisions by demonstrating potential impacts of policies on future deforestation and GHG emissions. We modelled land change to explore the potential impacts of expert-informed scenarios on deforestation and GHG emissions, specifically CO2 emissions, in the Ankeniheny–Zahamena Corridor in eastern Madagascar. We considered four scenarios: business as usual; effective conservation of protected areas; investment in infrastructure; and agricultural intensification. Our results highlight that effective forest conservation could deliver substantial emissions reductions, while infrastructure development will likely cause forest loss in new areas. Agricultural intensification could prevent additional forest loss if it reduced the need to clear more land while improving food security. Our study demonstrates how available land change modelling tools and scenario analyses can inform land-use policies, helping countries reconcile economic development with forest conservation and climate change mitigation commitments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Land Change Modelling to Inform Strategic Decisions on Forest Cover and CO2 Emissions in Eastern Madagascar
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Land Change Modelling to Inform Strategic Decisions on Forest Cover and CO2 Emissions in Eastern Madagascar
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Land Change Modelling to Inform Strategic Decisions on Forest Cover and CO2 Emissions in Eastern Madagascar
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited

Corresponding author

*Author for correspondence: Jennifer Hewson, Email:


Hide All

Cite this article: Hewson J, Razafimanahaka JH, Wright TM, Mandimbiniaina R, Mulligan M, Jones JPG, Van Soesbergen A, Andriamananjara A, Tabor K, Rasolohery A, Razakamanarivo H, Razafindrakoto M, Rianahary A, Razafimbelo T, Ranaivoson N, Harvey CA (2018) Land Change Modelling to Inform Strategic Decisions on Forest Cover and CO2 Emissions in Eastern Madagascar. Environmental Conservation page 1 of 9. doi: 10.1017/S0376892918000358



Hide All
Aguiar, APD, Vieira, ICG, Assis, TO, Dalla‐Nora, E-L, Toledo, PM, Santos‐Junior, RAO et al. (2016) Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Global Change Biology 22: 18211840.
Alves, DS (2002) Space–time dynamics of deforestation in Brazilian Amazônia. International Journal of Remote Sensing 23: 29032908.
Andriamananjara, A, Hewson, J, Razakamanarivo, N, Andrisoa, RH, Ranaivoson, N, Ramboatiana, N et al. (2016) Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest. Agriculture, Ecosystems and Environment 233: 115.
Anonymous (2018) Rosewood democracy in the political forests of Madagascar. Political Geography 62: 170183.
Angelsen, A, Jagger, P, Babigumira, R, Belcher, B, Hogarth, NJ, Bauch, S et al. (2014) Environmental income and rural livelihoods: a global-comparative analysis. World Development 64: S12S28.
Barber, CP, Cochrane, MA, Souza, CM Jr, Laurance, WF (2014) Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biological Conservation 177: 203209.
Bare, M, Kauffman, C, Miller, DC (2015) Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environmental Research Letters 10: 021001.
Brimont, L, Karsenty, A (2015) Between incentives and coercion: the thwarted implementation of PES schemes in Madagascar’s dense forests. Ecosystem Services 14: 113121.
Brooks, CP, Holmes, C, Kramer, K, Barnett, B, Keitt, TH (2009) The role of demography and markets in determining deforestation rates near Ranomafana national park, Madagascar. PLoS ONE 4: e5783.
Chave, J, Andalo, C, Brown, S, Cairns, MA, Chambers, JQ, Eamus, D et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 8799.
Conservation International (2013) Carbon Emissions Reduction Project in the Corridor Ankeniheny–Zahamena (CAZ) Protected Area, Madagascar. VCS Project Description: VCS version 3. URL
CIA (2013) World Factbook. Washington, DC, USA: Central Intelligence Agency, URL
Damania, R, Wheeler, D (2015) Policy Research Working Paper 7274: Road Improvement and Deforestation in the Congo Basin Countries. Washington, DC, USA: World Bank Group.
De Rosa, M, Knudsen, TM, Hermansen, JE (2016) A comparison of land use change models: challenges and future developments. Journal of Cleaner Production 113: 183193.
Eastman, JR (2016) The TerrSet Geospatial Monitoring and Modeling System. Worcester, MA, USA: Clark University.
Eastman, JR, Toledano, J (2018) A short presentation of the Land Change Modeler (LCM). In: Geomatic Approaches for Modeling Land Change Scenarios, Lecture Notes in Geoinformation and Cartography, eds. MT CamachoOlmedo, MPaegelow, J-FMas and FEscobar, pp. 499505. Berlin, Germany: Springer.
Fuller, DO, Hardiono, M, Meijaard, E (2011) Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia. Environmental Management 48: 436447.
Gardner, CJ, Nicoll, ME, Mbohoahy, T, Oleson, KLL, Ratsifandrihamanana, AN, Ratsirarson, J et al. (2013) Protected areas for conservation and poverty alleviation: experiences from Madagascar. Journal of Applied Ecology 50: 12891294.
Gibson, L, Lee, TM, Pin Koh, L, Brook, BW, Gardner, TA, Barlow, J et al. (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478: 378381.
Goetz, SJ, Hansen, M, Houghton, RA, Walker, W, Laporte, N, Busch, J (2015) Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environmental Research Letters 10: 123001.
Harper, GJ, Steininger, MK, Tucker, CJ, Juhn, D, Hawkins, F (2007) Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation 34: 325333.
Harvey, CA, Rakotobe, ZL, Rao, NS, Dave, R, Razafimahatratra, H, Rabarijohn, RH et al. (2014) Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philosophical Transactions of the Royal Society 369: 20130089.
IMF (2017) Republic of Madagascar: Economic Development Document. IMF Country Report No. 17/225. Washington, DC, USA: International Monetary Fund.
JICA (2013) Revolution in Madagascar, a Rice-Growing Country. URL
Jones, JPG (2016) A ‘Sapphire Rush’ Has Sent at Least 45,000 Miners into Madagascar’s Protected Rainforests. The Conversation. URL
LandScan (2007) LandScan™ Global Population Database. Oak Ridge, TN, USA: Oak Ridge National Laboratory. URL
Lehner, B, Verdin, K, Jarvis, A (2008) New global hydrography derived from spaceborne elevation data. Eos Transactions, AGU 89: 9394.
Lippe, M, Hilger, T, Sudchalee, S, Wechpibal, N, Jintrawet, A, Cadisch, A (2017) Simulating stakeholder-based land-use change scenarios and their implication on above-ground carbon and environmental management in northern Thailand. Land 6: 85.
Madagascar Tribune (2016) Construction d’une autoroute Tana-Toamasina, posted on 27 July 2016, consulted on 7 October 2016. URL,22315.html
Minten, B, Barrett, CB (2008) Agricultural technology, productivity, and poverty in Madagascar. World Development 36: 797822.
Mulligan, M (2013a) SimTerra: a consistent global gridded database of environmental properties for spatial modelling. URL
Mulligan, M (2013b) WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrology Research 44: 748769.
Pan, Y, Birdsey, RA, Fang, J, Houghton, R, Kauppi, PE, Kurz, WA et al. (2011) A large and persistent carbon sink in the world’s forests. Science 333: 988993.
Peterson, GD, Cumming, GS, Carpenter, SR (2003) Scenario planning: a tool for conservation in an uncertain world. Conservation Biology 17: 358366.
Pontius, RG Jr, Batchu, K (2003) Land cover change in India. Transactions in GIS 7: 467484.
Pontius, RG Jr, Boersma, W, Castella, J-C, Clarke, K, de Nijs, T, Dietzel, C et al. (2008) Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science 42: 1147.
Portela, R, Nunes, PALD, Onofri, L, Villa, F, Shepard, A, Lange, GM (2012) Assessing and Valuing Ecosystem Services in Ankeniheny–Zahamena Corridor (CAZ), Madagascar: A Demonstration Case Study for the Wealth Accounting and the Valuation of Ecosystem Services (WAVES) Global Partnership. Arlington, VA, USA: Conservation International.
Poudyal, M, Ramamonjisoa, BS, Hockley, N, Rakotonarivo, OS, Gibbons, JM, Mandimbiniaina, R et al. (2016) Can REDD+ social safeguards reach the ‘right’ people? Lessons from Madagascar. Global Environmental Change 37: 3142.
Poudyal, M, Rasoamanana, A, Andrianantenaina, SN, Mandimbiniaina, R, Hockley, N, Razafimanahaka, JH et al. (2017) Household-level agricultural inputs-outputs, off-farm income and wild-harvested products survey in eastern Madagascar [Data Collection]. Colchester, UK: UK Data Archive, URL
Raik, D (2007) Forest management in Madagascar: an historical overview. Madagascar Conservation & Development 2: 510.
Rakotomala, A, Rabenandrasana, JC, Andriambahiny, JE, Rajaonson, R, Andriamalala, F, Burren, C et al. (2013) Estimation de la déforestation des forêts humides à Madagascar utilisant une classification multidate d’images Landsat entre 2005, 2010 et 2013. Revue Française de Photogrammétrie et de Télédétection 211: 1123.
Rakotovao, NH, Razafimbelo, TM, Rakotosamimanana, S, Randrianasolo, Z, Randriamalala, JR, Albrecht, A (2017) Carbon footprint of smallholder farms in central Madagascar: the integration of agroecological practices. Journal of Cleaner Production 140: 11651175.
Rasolofoson, RA, Ferraro, PJ, Jenkins, CN, Jones, JPG (2015) Effectiveness of community forest management at reducing deforestation in Madagascar. Biological Conservation 184: 271277.
Reddy, CS, Singh, S, Dadhwal, VK, Jha, CS, Rao, NR, Diwakar, PG (2017) Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science 126: 116.
Rodenburg, J, Zwart, SJ, Kiepe, P, Narteh, LT, Dogbe, W, Wopereis, MCS (2014) Sustainable rice production in African inland valleys: seizing regional potentials through local approaches. Agricultural Systems 123, 111.
Sangermano, F, Toldedano, J, Eastman, JR (2012) Land cover change in the Bolivian Amazon and its implications for REDD+ and endemic biodiversity. Landscape Ecology 27: 571584.
Sexton, JO, Song, XP, Feng, M, Noojipady, P, Anand, A, Huang, C et al. (2013) Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth 6: 427448.
Styger, E, Rakotondramasy, HM, Pfeffer, MJ, Fernandes, ECM, Bates, DM (2007) Influence of slash-and-burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar. Agriculture, Ecosystems and Environment 119: 257269.
Swetnam, RD, Fisher, B, Mbilinyi, BP, Munishi, PKT, Willcock, S, Ricketts, T et al. (2011) Mapping socio-economic scenarios of land cover change: a GIS method to enable ecosystem service modelling. Journal of Environmental Management 92: 563574.
Tabor, K, Jones, KW, Hewson, J, Rasolohery, A, Rambeloson, A, Andrianjohaninarivo, T, Harvey, CA (2017) Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny–Zahemena Corridor, Madagascar. PLoS One 12: e0190119.
Tsujimoto, Y, Horie, T, Randriamihary, H, Shiraiwa, T, Homma, K (2009) Soil management: the key factors for higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of Madagascar. Agricultural Systems 100: 6171.
United Nations, Department of Economic and Social Affairs, Population Division (2015) World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241. New York, NY, USA: United Nations.
Vieilledent, G, Gardi, O, Grinand, C, Burren, C, Andriamanjato, M, Camara, C et al. (2016) Bioclimatic envelope models predict a decrease in tropical forest carbon stocks with climate change in Madagascar. Journal of Ecology 104: 703715.
World Bank (2014) Rural population (% of total in Madagascar). URL
Xinhuanet (2017) China welcomes Madagascar to join Belt and Road construction. URL
Zarin, DJ, Harris, NL, Baccini, A, Aksenov, D, Hansen, MC, Azevedo-Ramos, C et al. (2016) Can carbon emissions from tropical deforestation drop by 50% in 5 years? Global Change Biology 22: 13361347.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed