Skip to main content Accessibility help
×
Home

Influence of carbon mapping and land change modelling on the prediction of carbon emissions from deforestation

  • VICTOR HUGO GUTIERREZ-VELEZ (a1) (a2) and ROBERT GILMORE PONTIUS (a3)

Summary

The implementation of an international programme for reducing carbon emissions from deforestation and degradation (REDD) can help to mitigate climate change and bring numerous benefits to environmental conservation. Information on land change modelling and carbon mapping can contribute to quantify future carbon emissions from deforestation. However limitations in data availability and technical capabilities may constitute an obstacle for countries interested in participating in the REDD programme. This paper evaluates the influence of quantity and allocation of mapped carbon stocks and expected deforestation on the prediction of carbon emissions from deforestation. The paper introduces the conceptual space where quantity and allocation are involved in predicting carbon emissions, and then uses the concepts to predict carbon emissions in the Brazilian Amazon, using previously published information about carbon mapping and deforestation modelling. Results showed that variation in quantity of carbon among carbon maps was the most influential component of uncertainty, followed by quantity of predicted deforestation. Spatial allocation of carbon within carbon maps was less influential than quantity of carbon in the maps. For most of the carbon maps, spatial allocation of deforestation had a minor but variable effect on the prediction of carbon emissions relative to the other components. The influence of spatial carbon allocation reaches its maximum when 50% of the initial forest area is deforested. The method can be applied to other case studies to evaluate the interacting effects of quantity and allocation of carbon with future deforestation on the prediction of carbon emissions from deforestation.

Copyright

Corresponding author

*Correspondence: Victor Hugo Gutierrez-Velez e-mail vhg2103@columbia.edu

References

Hide All
Alexandrov, G.A. (2011) Forest cover: setting targets for the future. Carbon Balance and Management 6:12.
Asner, G.P., Powell, G.V.N., Mascaro, J., Knapp, D.E., Clark, J.K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M. & Flint Highes, R. (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences 107: 1673816742.
Baddeley, A. & Turner, R. (2005) Spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software 12: 142.
Brown, S. & Lugo, A. (1992) Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia 17: 818.
Brown, S., Hall, M., Andrasko, K., Ruiz, F., Marzoli, W. & Guerrero, G. (2007) Baselines for land-use change in the tropics: application to avoided deforestation projects. Mitigation and Adaptation Strategies for Global Change 12: 10011026.
Busch, J., Godoy, F., Turner, W.R. & Harvey, C.A. (2011) Biodiversity co-benefits of reducing emissions from deforestation under alternative reference levels and levels of finance. Conservation Letters 4: 101115.
Castillo-Santiago, M., Hellier, A., Tipper, R. & De Jong, B. (2007) Carbon emissions from land-use change: an analysis of causal factors in Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change 12: 12131235.
Cerbu, G. A., Swallow, B.M. & Thompson, D.Y. (2011) Locating REDD: a global survey and analysis of REDD readiness and demonstration activities. Environmental Science and Policy 14: 168180.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S. & Perez, R. (2004) Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359: 409420.
Chomitz, K.M. & Thomas, T.S. (2003) Determinants of land use in Amazonia: a fine-scale spatial analysis. American Journal of Agricultural Economics 85: 10161028.
Corbera, E., Estrada, M., & Brown, K. (2010) Reducing greenhouse gas emissions from deforestation and forest degradation in developing countries: revisiting the assumptions. Climatic Change 100: 355388.
da Fonseca, G.A.B., Rodriguez, C.M., Midgley, G., Busch, J., Hannah, L. & Mittermeier, R.A. (2007) No forest left behind. PLoS Biology 5: 16451646.
DeFries, R., Hansen, M., Townshend, J., Janetos, A. & Loveland, T. (2000) A new global 1km data set of percent tree cover derived from remote sensing. Global Change Biology 6: 247254.
De Jong, B., Hellier, A., Castillo-Santiago, M. & Tipper, R. (2005) Application of the ‘climafor’ approach to estimate baseline carbon emissions of a forest conservation project in the Selva Lacandona, Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change 10: 265278.
Ebeling, J. & Yasué, M. (2008) Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 19171924.
Estrada, M. (2011) Standards and methods available for estimating project-level REDD+ carbon benefits: reference guide for project developers. CIFOR, Bogor, Indonesia [www document]. URL http://www.cifor.org/nc/online-library/browse/view-publication/publication/3412.html
Fearnside, P.M. (1997) Greenhouse gases from deforestation in the Brazilian Amazonia: net committed emissions. Climatic Change 35: 321360.
Fearnside, P.M. (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change 46: 115158.
Fedorko, E., Pontius, R.G. Jr, Aldrich, S., Claessens, L., Hopkinson, C. Jr & Wolheim, W. (2005) Spatial distribution of land type in regression models of pollutant loading. Journal of Spatial Hydrology 5: 6080.
Gibbs, H., Brown, S., Niles, J. & Foley, J. (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters 2: 13.
GOFC-GOLD (2010) Sourcebook COP 16 Version 1.GOFC-GOLD project office, Alberta, Canada [www document]. URL http://www.gofc-gold.uni-jena.de/redd/
Griscom, B., Shoch, D., Stanley, B., Cortez, R. & Virgilio, N. (2009) Sensitivity of amounts and distribution of tropical forest carbon credits depending on baseline rules. Environmental Science & Policy 12:897911.
Harris, N., Petrova, S., Stolle, F. & Brown, S. (2008) Identifying optimal areas for REDD intervention: East Kalimantan, Indonesia as a case study. Environmental Research Letters 3: 035006.
Houghton, R.A., Lawrence, K.T., Hackler, J.L. & Brown, S. (2001) The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates. Global Change Biology 7: 731746.
Houghton, R.A. (2005) Aboveground forest biomass and the global carbon balance. Global Change Biology 11: 945958.
Huettner, M., Leemans, R., Kok, K. & Ebeling, J. (2009) A comparison of baseline methodologies for ‘Reducing Emissions from Deforestation and Degradation’. Carbon Balance and Management 4: 4.
INPE (2009) Monitoramento da Floresta Amazônica Brasileira por Satelite, Projeto PRODES., Sao Paulo, Brazil [www document]. URL http://www.obt.inpe.br/prodes/
Kim, O.S. (2010) An assessment of deforestation models for Reducing Emissions from Deforestation and Forest Degradation (REDD). Transactions in GIS 14: 631654.
Kindermann, G., Obersteiner, M., Sohngen, B.et al. (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences USA 105: 1030210307.
Kirby, K.R., Laurance, W.F., Albernaz, A.K., Schroth, G., Fearnside, P.M., Bergen, S., Venticinque, E.M. & da Costa, C. (2006) The future of deforestation in the Brazilian Amazon. Futures 38: 432453.
Malhi, Y., Wood, D., Baker, T.R., Wright, J., Phillips, O.L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Monteagudo, A., Neill, D.A., Nuñez, P., Nigel, V., Pitman, C.A., Quesada, C.A., Salomao, R., Natalino, J., Silva, M., Torres Lezama, A., Terborgh, J., Vàsquez MartÍnez, R., & Vinceti, B. (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology 12: 11071138.
Miles, L., Grainger, A. & Phillips, O. (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Global Ecology and Biogeography 13: 553565.
Nogueira, E.M., Fearnside, P.M., Nelson, B.W., Barbosa, R.I. & Keizer, E.W.H. (2008) Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management 256: 18531867.
Olander, L.P., Gibbs, H.K., Steininger, M., Swenson, J.J. & Murray, B.C. (2008) Reference scenarios for deforestation and forest degradation in support of REDD: a review of data and methods. Environmental Research Letters 3: 11.
Olson, J., Watts, J. & Allison, L. (1983) Carbon in Live Vegetation of Major World Ecosystems. Technical Report TR004. US Department of Energy, Washington, DC, USA [www document]. URL http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5963568
Pan, Y., Hom, J., Birdsey, R. & McCullough, K. (2004) Impacts of rising nitrogen deposition on N exports from forests to surface waters in the Chesapeake Bay watershed. Environmental Management 33: S120S131.
Parker, C. & Mitchell, A. (2009) Little REDD+ book: an updated guide to governmental and non-governmental proposals for reducing emissions from deforestation and degradation. Global Canopy Programme, Oxford, UK [www document]. URL http://www.globalcanopy.org/materials/little-redd-book
Penman, J., Gytarsky, M., Hiraishil, T., Irving, W. & Krug, T. (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories: overview. In: IPCC Guidelines for National Greenhouse Gas Inventories, ed. Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K., pp. 112. IGES, Hayama, Japan [www document]. URL http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml#.T4SFv46p2K4
Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sanchez-Cordero, V., Soberon, J. & Buddemeier, R.H. (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416: 626629.
Pontius, R., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., Duan, Z., Fotsing, E., Goldstein, N., Kok, K., Koomen, E., Lippitt, C., McConnell, W., Mohd Sood, A., Pijanowski, B., Pithadia, S., Sweeney, S., Trung, T., Veldkamp, A., & Verburg, P. (2008 a) Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science 42: 1147.
Pontius, R., Thontteh, O. & Chen, H. (2008 b) Components of information for multiple resolution comparison between maps that share a real variable. Environmental and Ecological Statistics 15: 111142.
Pontius, R.G. & Millones, M. (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing 32: 44074429.
Potter, C.S. (1999) Terrestrial biomass and the effects of deforestation on the global carbon cycle. Bioscience 49: 769778.
Ramankutty, N., Gibbs, H.K., Achard, F., DeFries, R, Foley, J.A. & Houghton, R.A. (2007) Challenges to estimating carbon emissions from tropical deforestation. Global Change Biology 13: 5166.
Saatchi, S.S., Houghton, R.A., Dos Santos-Alvalá, R.C., Soares, J.V. & Yu, Y. (2007) Distribution of aboveground live biomass in the Amazon basin. Global Change Biology 13: 816837.
Sanchez-Azofeifa, G.A., Castro-Esau, K.L., Kurz, W.A. & Joyce, A. (2009) Monitoring carbon stocks in the tropics and the remote sensing operational limitations: from local to regional projects. Ecological Applications 19: 480494.
Sangermano, F., Toledano, J. & Eastman, J. (2012) Land cover change in the Bolivian Amazon and its implications for REDD+ and endemic biodiversity. Landscape Ecology 27: 571584.
Scheyvens, H. (2010) Developing national REDD-Plus systems: progress, challenges and ways forward. IGES, Kanagawa, Japan: 104 pp. [www document]. URL http://enviroscope.iges.or.jp/modules/envirolib/view.php?docid=3051
Sloan, S. & Pelletier, J. (2012) How accurately may we project tropical forest-cover change? A validation of a forward-looking baseline for REDD. Global Environmental Change (in press).
Soares-Filho, B.S., Nepstad, D.C., Curran, L.M., Cerqueira, G.C., Garcia, R.A., Ramos, C.A., Voll, E., McDonald, A., Lefebvre, P. & Schlesinger, P. (2006) Modelling conservation in the Amazon basin. Nature 440: 520523.
Umemiya, C., Amano, M. & Wilamart, S. (2010) Assessing data availability for the development of REDD-plus national reference levels. Carbon Balance and Management 5: 6.
UNFCCC (2009) Decision 4/CP.15. Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries [www document]. URL http://unfccc.int/methods_and_science/lulucf/items/4267.php
Venter, O., Laurance, W.F., Iwamura, T., Wilson, K.A., Fuller, R.A. & Possingham, H.P. (2009) Harnessing carbon payments to protect biodiversity. Science 326: 13681368.
Verchot, L.V. & Petkova, E. (2010) The state of REDD negotiations: consensus points, options for moving forward and research needs to support the process. UN-REDD, CIFOR, Bogor, Indonesia [www document]. URL http://www.cifor.org/nc/online-library/browse/view-publication/publication/2870.html
Verbist, B., Vangoidsenhoven, M., Dewulf, R. & Muys, B. (2011) Reducing emissions from deforestation and degradation (REDD). Klimos Working Paper-3. Klimos, Leuven, Belgium [www document]. URL http://www.biw.kuleuven.be/lbh/lbnl/forecoman/klimos/publications.html

Keywords

Related content

Powered by UNSILO

Influence of carbon mapping and land change modelling on the prediction of carbon emissions from deforestation

  • VICTOR HUGO GUTIERREZ-VELEZ (a1) (a2) and ROBERT GILMORE PONTIUS (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.