Skip to main content Accessibility help
×
Home

Fitness and beyond: Preparing for the arrival of GM crops with ecologically important novel characters

  • Mike Wilkinson (a1) and Mark Tepfer (a2)

Abstract

The seemingly inexorable expansion of global human population size, significant increases in the use of biofuel crops and the growing pressures of multifunctional land-use have intensified the need to improve crop productivity. The widespread cultivation of high-yielding genetically modified (GM) crops could help to address these problems, although in doing so, steps must also be taken to ensure that any gene flow from these crops to wild or weedy recipients does not cause significant ecological harm. It is partly for this reason that new GM cultivars are invariably subjected to strict regulatory evaluation in order to assess the risks that each may pose to the environment. Regulatory bodies vary in their approach to decision-making, although all require access to large quantities of detailed information. Such an exhaustive case-by-case approach has been made tractable by the comparative simplicity of the portfolio of GM crops currently on the market, with four crops and two classes of traits accounting for almost all of the area under cultivation of GM crops. This simplified situation will change shortly, and will seriously complicate and potentially slow the evaluation process. Nowhere will the increased diversity of GM crops cause more difficulty to regulators than in those cases where there is a need to assess whether the transgene(s) will enhance fitness in a non-transgenic relative and thereafter cause ecological harm. Current practice to test this risk hypothesis focuses on attempting to detect increased fitness in the recipient. In this paper we explore the merits and shortcomings of this strategy, and investigate the scope for developing new approaches to streamline decision-making processes for transgenes that could cause unwanted ecological change.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fitness and beyond: Preparing for the arrival of GM crops with ecologically important novel characters
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fitness and beyond: Preparing for the arrival of GM crops with ecologically important novel characters
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fitness and beyond: Preparing for the arrival of GM crops with ecologically important novel characters
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1] Aaziz, R, Tepfer, M (1999) Recombination in RNA viruses and virus-resistant transgenic plants. J. Gen. Virol. 80: 13391346
[2] Angevin, F, Klein, EK, Choimet, C, Gauffreteau, A, Lavigne, C, Messean, A, Meynard, JM (2008) Modelling impacts of cropping systems and climate on maize cross-pollination in agricultural landscapes: The MAPOD model. Eur. J. Agron. 28: 471484
[3] Aono, M, Wakiyama, S, Nagatsu, M, Nakajima, N, Tamaoki, M, Kubo, A, Saji, H (2006) Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ. Biosafety Res. 5: 7787
[4] Bailey JP, Wisskirchen R (2006) The distribution and origins of Fallopia × bohemica (Polygonaceae) in Europe. Nordic J. Bot. 24 173–199
[5] Bailey, JP, Bimova, K, Mandak, B (2007) The potential role of polyploidy and hybridisation in the further evolution of the highly invasive Fallopia taxa in Europe. Ecol. Res. 22: 920928
[6] Beaumont, MA, Zhang, WY, Balding, DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162: 20252035
[7] Bratteler, M, Baltisberger, M, Widmer, A (2006) QTL analysis of intraspecific differences between two Silene vulgaris ecotypes. Ann. Bot.-London 98: 411419
[8] Brummell, DA, Howie, WJ, Ma, C, Dunsmuir, P (2002) Postharvest fruit quality of transgenic tomatoes suppressed in expression of a ripening-related expansin. Postharvest Biol. Tec. 25: 209220
[9] Bullock, JM, Pywell, RF, Coulson-Phillips, SJ (2008) Managing plant population spread: Prediction and analysis using a simple model. Ecol. Appl. 18: 945953
[10] Cai, L, Zhou, BW, Guo, XL, Dong, CH, Hu, XJ, Hou, MS, Liu, SY (2008) Pollen-mediated gene flow in Chinese commercial fields of glufosinate-resistant canola (Brassica napus). Chinese Sci. Bull. 53: 23332341
[11] Capalbo, DMF, Hilbeck, A, Andow, D, Snow, A, Bong, BB, Wan, FH, Fontes, EMG, Osir, EO, Fitt, GP, Johnston, J, Songa, J, Heong, KL, Birch, ANE (2003) Brazil and the development of international scientific biosafety testing guidelines for transgenic crops. 8th International Colloquium on Invertebrate Pathology and Microbial Control/35th Annual Meeting of the SIP/6th International Conference on Bacillus thuringiensis, August, 2002, Iguassu Falls, Brazil. J. Invertebr. Pathol. 83: 104106
[12] Cardwell, R, Kerr, WA (2008) Protecting biotechnology IPRs in developing countries: Simple analytics of a levy solution. J. Agr. Econ. 59: 217236
[13] Cheffings C, Farrell L (2005) The Vascular Plant Red Data List for Great Britain. Peterborough: Joint Nature Conservation Committee
[14] Crawley, MJ, Brown, SL (1995) Seed limitation and the dynamics of feral oilseed rape on the M25 Motorway. P. Roy. Soc. B-Biol. Sci. 259: 4954
[15] Crawley, MJ, Hails, RS, Rees, M, Kohn, D, Buxton, J (1993) Ecology of transgenic oilseed rape in natural habitats. Nature 363: 620623
[16] de Torres-Zabala, M, Truman, W, Bennett, MH, Lafforgue, G, Mansfield, JW, Egea, PR, Bogre, L, Grant, M (2007) Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 26: 14341443
[17] de Wispelaere, M, Gaubert, S, Trouilloud, S, Belin, C, Tepfer, M (2005) A map of the diversity of RNA3 recombinants appearing in plants infected with Cucumber mosaic virus and Tomato aspermy virus. Virology 331: 117127
[18] Devaux, C, Lavigne, C, Falentin-Guyomarc'h, H, Vautrin, S, Lecomte, J, Klein, EK (2005) High diversity of oilseed rape pollen clouds over an agro-ecosystem indicates long-distance dispersal. Mol. Ecol. 14: 22692280
[19] Eveno, E, Collada, C, Guevara, MA (2008) Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol. Biol. Evol. 25: 417437
[20] Ford CS, Allainguillaume J, Grilli-Chantler P, Cuccato G, Allender CJ, Wilkinson MJ (2006) Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea. P. Roy. Soc. B-Biol. Sci. 273: 3111–3115
[21] Franks SJ, Pratt PD, Dray FA, Simms EL (2008) Selection on herbivory resistance and growth rate in an invasive plant. Am. Nat. 171: 678–691
[22] Gardner, KM, Latta, RG (2006) Identifying loci under selection across contrasting environments in Avena barbata using quantitative trait locus mapping. Mol. Ecol. 15: 13211333
[23] Garnier, A, Deville, A, Lecomte, J (2006) Stochastic modelling of feral plant populations with seed immigration and road verge management. Ecol. Model. 197: 373382
[24] Guehlstorf, NP, Hallstrom, LK (2005) The role of culture in risk regulations: a comparative case study of genetically modified corn in the United States of America and European Union. Environ. Sci. Policy 8: 327342
[25] James C (2005) Preview: Global status of commercialized biotech/GM crops: 2005. ISAAA Briefs 34: Ithaca: ISAAA
[26] Jepson, WE, Brannstrom, C, de Souza, RS (2005) A case of contested ecological modernisation: the governance of genetically modified crops in Brazil. Environ. Plann. C 23: 295310
[27] Kalaitzandonakes, N, Alston, JM, Bradford, KJ (2007) Compliance costs for regulatory approval of new biotech crops. Nat. Biotechnol. 25: 509511
[28] Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175: 1823–1834
[29] Kannenberg, S, Widmer, A (2008) Ecologically relevant genetic variation from a non-Arabidopsis perspective. Curr. Opin. Plant Biol. 11: 156162
[30] Kent County Council (2000) Kent Red Data Book: A provisional guide to the threatened flora and fauna of Kent. Maidstone: KCC Environmental Management
[31] Lavigne, C, Klein, EK, Vallee, P, Pierre, J, Godelle, B, Renard M (1998) A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor. Appl. Genet. 96: 886896
[32] Lavigne, C, Klein, EK, Mari, JF, Le Ber, F, Adamczyk, K, Monod, H, Angevin, F (2008) How do genetically modified (GM) crops contribute to background levels of GM pollen in an agricultural landscape? J. Appl. Ecol. 45: 11041113
[33] Losey, JE, Rayor, LS, Carter, ME (1999) Transgenic pollen harms monarch larvae. Nature 399: 214
[34] Lu, CF, Kang, JL (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep. 27: 273278
[35] Manasse, RS (1992) Ecological risks of transgenic plants - effects of spatial-dispersion on gene flow. Ecol. Appl. 2: 431438
[36] McCartney, HA, Lacey, ME (1991) Wind dispersal from crops of oilseed rape (Brassica napus). J. Aerosol Sci. 22: 467477
[37] Mur LAJ, Carver TLW, Prats E (2006) NO way to live; the various roles of nitric oxide in plant-pathogen interactions. J. Exp. Bot. 57: 489–505
[38] Nasiruddin, KM, Nasim, A (2007) Development of agribiotechnology and biosafety regulations used to assess safety of genetically modified crops in Bangladesh. Symposium on Safety and Adequacy Testing of Foods/Feeds Nutritionally Enhanced Through Biotechnology, July 26, 2006, Gaithersburg, MD. J. Aoac. Int. 90: 15081512
[39] Pandey GK, Cheong YH, Kim KN, Grant JJ, Li LG, Hung W, D'Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-Like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16: 1912–1924
[40] Pessel, FD, Lecomte, J, Emeriau, V, Krouti, M, Messean, A, Gouyon, PH (2001) Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor. Appl. Genet. 102: 841846
[41] Pivard, S, Demsar, D, Lecomte, J, Debeljak, M, Dzeroski S (2008a) Characterizing the presence of oilseed rape feral populations on field margins using machine learning. Ecol. Model. 212: 147154
[42] Pivard, S, Adamczyk, K, Lecomte, J, Lavigne, C, Bouvier, A, Deville, A, Gouyon, PH, Huet, S (2008b) Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area. J. Appl. Ecol. 45: 476485
[43] Ramjoue, C (2007) The transatlantic rift in genetically modified food policy. J. Agr. Environ. Ethic. 20: 419436
[44] Raybould, A (2007) Ecological versus ecotoxicological methods for assessing the risks of transgenic crops. Plant Sci. 173: 589602
[45] Rodwell JS (1991) British Plant Communities, Vols. 1–5. Cambridge: Cambridge University Press for the Joint Nature Conservancy Council
[46] Roelofs, D, Aarts, MGM, Schat, H, van Straalen, NM (2008) Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct. Ecol. 22: 818
[47] Rowland, IR (2002) Genetically modified foods, science, consumers and the media. P. Nutr. Soc. 61: 2529
[48] Saji, H, Nakajima, N, Aono, M, Tamaoki, M, Kubo, A, Wakiyama, S, Hatase, Y, Nagatsu, M (2005) Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ. Biosafety Res. 4: 217222
[49] Salleh, A (2006) `Organised irresponsibility': Contradictions in the Australian government's strategy for GM regulation. Env. Politics 15: 399416
[50] Scheffler, JA, Parkinson, R, Dale, PJ (1993) Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Transgenic Res. 2: 356364
[51] Sears, MK, Hellmich, RL, Stanley-Horn, DE, Oberhauser, KS, Pleasants, JM, Mattila, HR, Siegfried, BD, Dively, GP (2001) Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proc. Natl. Acad. Sci. USA 98: 1193711942
[52] Shaw, MW, Harwood, TD, Wilkinson, MJ, Elliott, L (2006) Assembling spatially explicit landscape models of pollen and spore dispersal by wind for risk assessment. P. Roy. Soc. B-Biol. Sci. 273: 17051713
[53] Stokes KE, Bullock JM, Watkinson AR (2004) Population dynamics across a parapatric range boundary: Ulex gallii and Ulex minor. J. Ecol. 92: 142–155
[54] Tallmon, DA, Luikart, G, Beaumont, MA (2004) Comparative evaluation of a new effective population size estimator based on approximate Bayesian computation. Genetics 167: 977988
[55] Tan, S, Evans, R, Singh, B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30: 195204
[56] Timmons, AM, Charters, YM, Crawford, JW, Burn, D, Scott, SE, Dubbels, SJ, Wilson, NW, Robertson, A, O'Brien, ET, Squire, G, Wilkinson, M (1996) Risks from transgenic crops. Nature 380: 487
[57] Timmons, AM, O'Brien, ET, Charters, YM, Dubbels, SJ, Wilkinson, MJ (1995) Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. Euphytica 85: 417423
[58] Turturo, C, Friscina, A, Gaubert, S, Jacquemond, M, Thompson, JR, Tepfer, M (2008) Evaluation of the potential risks associated with recombination in transgenic plants expressing viral sequences. J. Gen. Virol. 89: 327335
[59] Verhoeven, KJF, Poorter, H, Nevo, E, Biere, A (2008) Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations. Mol. Ecol. 17: 34163424
[60] von der Lippe, M, Kowarik, I (2007a) Crop seed spillage along roads: a factor of uncertainty in the containment of GMO. Ecography 30: 483490
[61] von der Lippe, M, Kowarik, I (2007b) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv. Biol. 21: 986996
[62] Wilkinson MJ, Timmons AM, Charters Y, Dubbels S, Robertson A, Wilson N, Scott S, O'Brien E, Lawson HM (1995) Problems of risk assessment with genetically modified oilseed rape. Brighton Crop Protection Conference 1995 - Weeds 3: 1035–1044
[63] Wilkinson, MJ, Elliott, LJ, Allainguillaume, J, Shaw, MW, Norris, C, Welters, R, Alexander, M, Sweet, J, Mason, DC (2003a) Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom. Science 302: 457459
[64] Wilkinson, MJ, Sweet, J, Poppy, GM (2003b) Risk assessment of GM plants: avoiding gridlock? Trends Plant Sci. 8: 208212
[65] Wilson, WW, Henry, X, Dahl, BL (2008) Costs and risks of conforming to EU traceability requirements: The case of hard red spring wheat. Agribusiness 24: 85101
[66] Yoshimura, Y, Beckie, HJ, Matsuo, K (2006) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ. Biosafety Res. 5: 6775
[67] Yusuf, MA, Sarin, NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with gamma-TMT gene for increased alpha-tocopherol content. Transgenic Res. 16: 109113
[68] Zafar, Y (2007) Development of agriculture biotechnology in Pakistan. Symposium on Safety and Adequacy Testing of Foods/Feeds Nutritionally Enhanced Through Biotechnology, July 26, 2006, Gaithersburg, MD. J. Aoac. Int. 90: 15001507

Keywords

Related content

Powered by UNSILO

Fitness and beyond: Preparing for the arrival of GM crops with ecologically important novel characters

  • Mike Wilkinson (a1) and Mark Tepfer (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.