Skip to main content Accessibility help
×
Home

Economic impacts of regional water scarcity in the São Francisco River Basin, Brazil: an application of a linked hydro-economic model

  • Marcelo de O. Torres (a1), Marco Maneta (a2), Richard Howitt (a3), Stephen A. Vosti (a4), Wesley W. Wallender (a5), Luís H. Bassoi (a6) and Lineu N. Rodrigues (a7)...

Abstract

This paper presents a linked hydro-economic model and uses it to examine the regional effects of water use regulations and product price changes on the agriculture of the São Francisco River Basin, Brazil. The effects of weather on surface water availability are explicitly addressed using the hydrological model MIKE-Basin. Farmers’ adjustments to changes in precipitation, surface water availability, and other factors are quantified using an economic model based on non-linear programming techniques. The models are externally linked. Results show that regional impacts, at the sub-basin level, vary depending on the location of each sub-basin relative to river flows. The effects of water use regulations and of exogenous price shocks on agriculture depend on weather, location, product mix and production technology. Implications of these results for policies designed to manage agriculture and water use are discussed.

Copyright

References

Hide All
Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998), ‘Crop evapotranspiration, guidelines for computing crop water requirements’, FAO Irrigation and Drainage Paper No. 56, Food and Agriculture Organization of the United Nations, Rome, 300 pp.
ANA/GEF/PNUMA/OEA (2004), ‘Projeto de gerenciamento integrado das 1qatividades desenvolvidas em terra na bacia do São Francisco’, Subprojeto 4.5C – Plano decenal de recursos hidricos da bacia hidrografica do Rio San Francisco – PBHSF (2004–2013). 12, Superintendência de Conservação de Água e Solo, Brasília [in Portuguese].
Arfini, F. and Paris, Q. (1995), ‘A positive mathematical programming model for regional analysis of agricultural policies’, in Sotte, E. (ed.), The Regional Dimension in Agricultural Economics and Policies, Proceedings of the 40th Seminar, June 26–28, Ancona: EAAE, pp. 1735.
Bontemps, C. and Couture, S. (2002), ‘Irrigation water demand for the decision maker’, Environment and Development Economics 7(4): 643657.
Braga, B.P.F. and Lotufo, J.G. (2008), ‘Integrated river basin plan in practice: the São Francisco River Basin’, Water Resources Development 24(1): 3760.
Cai, X. and Wang, D. (2006), ‘Calibrating holistic water resources – economic models’, Journal of Water Resources Planning and Management 132(6): 414423.
Cai, X., McKinney, D.C., and Lasdon, L.S. (2003), ‘Integrated hydrologic-agronomic-economic model for river basin management’, Journal of Water Resources Planning and Management 129(1): 417.
Cai, X., Ringler, C., and You, J.Y. (2008), ‘Substitution between water and other agricultural inputs: implications for water conservation in a river basin context’, Ecological Economics 66(1): 3850.
Chatterjee, B., Howitt, R.E., and Sexton, R.J. (1998), ‘The optimal joint provision of water for irrigation and hydropower’, Journal of Environmental Economics and Management 36(3): 295313.
Danish Hydraulic Institute (2005), MIKE Basin 2005, User's Guide.
DE/FIH/GRDC and UNESCO/IHP (2001), Annotations for Monthly Discharge Data for World Rivers (excluding former Soviet Union), Boulder, CO: CISL Data Support Section, National Center for Atmospheric Research, [Available at] http://dss.ucar.edu/datasets/ds552.1/.
Draper, A.J., Jenkins, M.W., Kirby, K.W., Lund, J.R., and Howitt, R.E. (2003), ‘Economic-engineering optimization for California Water Management’, Journal of Water Resources Planning and Management May/June, 155164.
FAO (2000), Aquastat, Information System on Water and Agriculture, Country Profile: Brazil, Food and Agriculture Organization, [Available at] http://www.fao.org/nr/water/aquastat/countries/brazil/index.stm.
Guan, D. and Hubacek, K. (2007), ‘A new and integrated hydro-economic accounting and analytical framework for water resources: a case study for North China’, Journal of Environmental Management; doi:10.1016/j.jenvman.2007.07.010.
Heckelei, T. and Britz, W. (2000), ‘Positive mathematical programming with multiple data points: a cross-sectional estimation procedure’, Cahiers d'Economie et Sociologie Rurales 57: 2850.
Helming, J.F.M., Peeters, L., and Veendendall, P.J.J. (2001), ‘Assessing the consequences of environmental policy scenarios in Flemish agriculture’, in Heckelei, T., Witzke, H.P. and Henrichsmeyer, W. (eds), Proceedings of the 65th EAAE Seminar: Agricultural Sector Modelling and Policy Information Systems, Bonn University: Vauk Verlag Kiel, pp. 237245.
House, R.M. (1987), ‘USMP regional agricultural model’, National Economics Division Report No. ERS 30, Washington, DC: USDA.
Howitt, R.E. (1995), ‘A calibration method for agricultural economic production models’, Journal of Agricultural Economics 46: 147159.
Howitt, R.E. and Gardner, D.B. (1986), ‘Cropping production and resource interrelationships among California crops in response to the 1985 Food Security Act’, in Impacts of Farm Policy and Technical Change on US and Californian Agriculture, Davis: Issues Center, pp. 271290.
IBGE (Instituto Brasileiro de Geografia e Estatística) (1998), Agricultural Census 1995/96, Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística.
IBGE (Instituto Brasileiro de Geografia e Estatística) (2000–2009), Produção Agrícola Municipal, [Available at] http://www.sidra.ibge.gov.br/bda/acervo/acervo2.asp?e=v&p=PA&z=t&o=11.
Kasnakoglu, H. and Bauer, S. (1988), ‘Concept and application of an agricultural sector model for policy analysis in Turkey’, in Bauer, S. and Henrichsmeyer, W. (eds), Agricultural Sector Modelling, Kiel: Wissenschaftsverlag Vauk.
Lance, H.L. and Miller, D. (1998), ‘Estimation of multi-output production functions with incomplete data: a generalized maximum entropy approach’, European Review of Agricultural Economics 25:188209.
Maneta, M., Torres, M. de O., Wallender, W., Howitt, R., Vosti, S., Rodrigues, L., and Bassoi, L. (2009a), ‘A spatially distributed hydro-economic model to assess the effects of drought on land use, farm profits, and agricultural employment’, Water Resources Research 45, W11412; doi:10.1029/2008WR007534.
Maneta, M., Torres, M. de O., Wallender, W., Vosti, S., Kirby, M., Rodrigues, L., and Bassoi, L. (2009b), ‘Water demand and flows in the São Francisco River Basin (Brazil) with increased irrigation’, Agricultural Water Management 96: 11911200.
Marques, G.F., Lund, J.R., Leu, M.R., and Jenkins, M.W. (2006), ‘Economically-driven simulation of regional water systems: Friant-Kern, California’, Journal of Water Resources Planning and Management 132(6): 468479.
Mitchell, T.D. and Jones, P.D. (2005), ‘An improved method for constructing a database of monthly climate observations and associated high-resolution grids’, International Journal of Climatology 25: 693712.
Paris, Q. and Howitt, R.E. (1998), ‘An analysis of ill-posed production problems using maximum entropy’, American Journal of Agricultural Economics 80: 124138.
Petsakos, A. and Rozakis, S. (2009), ‘Critical review and state-of-the-art of PMP models: an application to Greek arable agriculture’, in Rezitis, A. (ed.) Research Topics in Agricultural and Applied Economics Volume 1 (e-book), Bentham Science Publishers, pp. 3661.
Preckel, P.V., Harrington, D., and Dubman, R. (2002), ‘Primal/dual Positive Math Programming: illustrated through an evaluation of the impacts of market resistance to genetically modified grains’, American Journal of Agricultural Economics 84(3): 679690.
Ringler, C., Huy, N.V., and Msangi, S. (2006), ‘Water allocation policy modeling for the Dong Nai River Basin: an integrated perspective’, Journal of the American Water Resources Association 42(6): 14651482.
Röhm, O. and Dabbert, S. (2003), ‘Integrating agri-environmental programs into regional production models: an extension of Positive Mathematical Programming, American Journal of Agricultural Economics 85(1): 254265.
Rosegrant, M.W., Ringler, C., McKinney, D.C., Cai, X., Keller, A., and Donoso, G. (2000), ‘Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin’, Agricultural Economics 24(1): 3346.
Timmer, C.P. (1988), ‘The agricultural transformation’, in Chenery, H. and Srinivasan, T.N. (eds), Handbook of Development Economics, Vol. I, Amsterdam: Elsevier Science Publishers.
Torres, M. de O., Vosti, S.A., Maneta, M.P., Wallender, W.W., Rodrigues, L.N., Bassoi, L.H., and Young, J.A. (2011), ‘Spatial patterns of rural poverty: an exploratory analysis in the São Francisco River Basin, Brazil’, Nova Economia 21: 4566.
Type Description Title
PDF
Supplementary Appendices

Torres Supplementary Appendices
Torres Supplementary Appendices

 PDF (377 KB)
377 KB

Economic impacts of regional water scarcity in the São Francisco River Basin, Brazil: an application of a linked hydro-economic model

  • Marcelo de O. Torres (a1), Marco Maneta (a2), Richard Howitt (a3), Stephen A. Vosti (a4), Wesley W. Wallender (a5), Luís H. Bassoi (a6) and Lineu N. Rodrigues (a7)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed