Skip to main content Accessibility help


  • S. Ribeiro-Silva (a1), M. B. Medeiros (a2), V. V. F. Lima (a2), A. B. Giroldo (a3), S. E. de Noronha (a2) and F. O. Resende (a1)...


Lychnophora ericoides Mart. (Asteraceae), popularly known as arnica, is a plant species subjected to non-timber forest products extraction. Evidence is mounting that some local populations are on the brink of extinction. However, demographic studies of Lychnophora ericoides are rare. Therefore, as a step towards conservation, a remnant population of Lychnophora ericoides located in an area of the Cerrado (Brazilian Savanna) in Central Brazil was evaluated from 2010 through 2014. Disturbances such as wildfires and harvesting of Lychnophora ericoides were randomly distributed throughout the study period in this area. Four annual transition matrices (A1, A2, A3 and A4) were constructed, based on life stages. The main results of studies of population dynamics for this species are as follows: 1) population growth rates (λ) with 95% confidence intervals indicated a declining population in all periods from 2010 to 2014; 2) stochastic population growth rate considering the four matrices was < 1 with value λ = 0.358 and CI95% = (0.354–0.362); 3) survival with permanence at the same stage of reproductive adult individuals (46–80%) contributed most to population growth rate, based on elasticity analysis; 4) the population is much less likely to have increases in density, compared with reduction, for all intervals from 2010 to 2014, based on transient indices; 5) the low value of λ in the high-mortality year was caused by lower stasis of individuals in the seedling or sapling and juvenile life stages, as well as fecundity in the 2011–2012 and 2012–2013 intervals, as shown by a life table response experiment; and 6) 100% of the population will probably be extinct within 15 years. There is evidence that the main cause for local extinction of Lychnophora ericoides could be the effects of frequent wildfires. Based on these results, it is suggested that the time has come for significant conservation efforts to rescue this population, including monitoring, protection and education as the first steps towards protection of this vulnerable plant species.


Corresponding author

E-mail for correspondence:


Hide All
Almeida, S. P., Proença, C. E. B, Sano, S. M. & Ribeiro, J. F. (1998). Cerrado: Espécies Vegetais Úteis. Planaltina: Embrapa–CPAC.
Avelino, A. S. (2005). Biologia reprodutiva de Lychnophora ericoides Mart. (Asteraceae: Vernonieae). Master's dissertation, Universidade de Brasília.
Baldauf, C., Corréa, C. E., Ferreira, R. C. & Santos, F. A. N. (2015). Assessing the effects of natural and anthropogenic drivers on the demography of Himatanthus drasticus (Apocynaceae): implications for sustainable management. Forest Ecol. Managem. 354: 177184.
Benites, V. M. (2001). Caracterização de solos e de substâncias húmicas em áreas de vegetação rupestre de altitude. Doctoral thesis, Universidade Federal de Viçosa.
Benites, V. M., Schaefer, C. E. G. R., Simas, F. N. B. & Santos, H. G. (2007). Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Revista Bras. Bot. 30 (4): 569577.
Bernal, R. (1998). Demography of the vegetable ivory palm Phytelephas seemannii in Colombia, and the impact of seed harvest. J. Appl. Ecol. 35 (1): 6474.
Bruna, E. M., Fiske, I. J. & Trager, M. D. (2009). Habitat fragmentation and plant populations: is what we know demographically irrelevant? J. Veg. Sci. 20 (3): 569576.
Caswell, H. (2001). Matrix Population Models: Construction, Analysis and Interpretation. Sunderland, Massachusetts: Sinauer Associates.
Collevatti, R. G., Rabelo, S. G, & Vieira, R. F. (2009). Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann. Bot. 104 (4): 655664.
Dietz, T., Ostrom, E. & Stern, P. C. (2003). The struggle to govern the commons. Science 302 (5652): 19071912.
Esri (2008). ArcGIS 10.1. Redlands, California: Environmental Systems Resource Institute.
Franco, M. & Silvertown, J. (2004). A comparative demography of plants based upon elasticities of vital rates. Ecology 85 (20): 531538.
Gaoue, O. G. & Ticktin, T. (2010). Effects of harvest of nontimber forest products and ecological differences between sites on the demography of African mahogany. Conservation Biol. 24 (2): 605614.
Giroldo, A. B & Scariot, A. (2015). Land use and management affects the demography and conservation of an intensively harvested Cerrado fruit tree species. Biol. Conservation 191: 150158.
Gottsberger, G. & Silberbauer-Gottsberger, I. (2006). Life in the Cerrado, a South American Tropical Seasonal Ecosystem: Origin, Structure, Dynamics and Plant Use. London: Springer-Verlag.
Holm, J. A., Miller, C. J. & Cropper, W. P. (2008). Population dynamics of the dioeceus Amazonian palm Mauritia flexuosa: simulation analysis for sustainable harvesting. Biotropica 40 (5): 550558.
Instituto Nacional de Meteorologia (continuously updated). Inmet database. Online. Available:
Kroon, H., Groenendael, J. & Eherlen, J. (2000). Elasticities: a review of methods and model limitations. Ecology 81 (3): 607618.
Lefkovitch, L. T. (1965). The study of population growth in organisms grouped by stages. Biometrics 21 (1): 118.
Medeiros, M. B. & Miranda, H. S. (2005). Mortalidade pós–fogo em espécies lenhosas de campo sujo submetido a três queimadas prescritas anuais. Acta Bot. Brasil. 19 (3): 493500.
Miranda, H. S., Bustamante, M. C. M. & Miranda, A. C. (2002). The fire factor. In: Oliveira, P. S. & Marquis, R. J. (eds) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, pp. 5168. New York, New York: Columbia University Press.
Morris, W. F. & Doak, D. F. (2002). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sunderland, Massachusetts: Sinauer Associates.
Portela, R. C. Q., Bruna, E. M. & Santos, F. A. M. (2010). Demography of palm species in Brazil's Atlantic Forest: a comparison of harvested and unharvested species using matrix models. Biodivers. & Conservation 19 (8): 23892403.
R Development Core Team (2015). R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Raventós, J., Gonzalez, E., Mujica, E. & Bonet, A. (2015). Transient population dynamics of two epiphytic orchid species after Hurricane Ivan: implications for management. Biotropica 47 (4): 441448.
Ribeiro, J. F. & Walter, B. M. T. (2008). As principais fitofisionomias do Bioma Cerrado. In: Sano, S. M., Almeida, S. P. & Ribeiro, J. F. (eds) Cerrado: Ecologia e Flora, pp. 153212. Brasília: Embrapa Cerrados and Embrapa Informação Tecnológica.
Sampaio, M. & Scariot, A. (2010). Effects of stochastic events on population maintenance of an understorey palm species (Geonoma schottiana) in riparian tropical forest. J. Trop. Ecol. 26 (2): 151161.
Schmidt, I. B., Mandle, L., Ticktin, T. & Gaoue, O. G. (2011). What do matrix population models reveal about sustainability of non-timber forest product harvest? J. Appl. Ecol. 48 (4): 815826.
Semir, J., Rezende, A. R., Monge, M. & Lopes, N. P. (2011). As Arnicas Endêmicas das Serras do Brasil – Uma Visão Sobre a Biologia e a Química das Espécies de Lychnophora (Asteraceae). Ouro Preto: Universidade Federal de Ouro Preto.
Silva, D. (2005). Estrutura populacional, fenologia, crescimento e efeito de poda em Lychnophora ericoides Mart. (Asteraceae). M.Sc. dissertation, Universidade de Brasília.
Silva, F. A. M., Assad, E. D. & Evangelista, B. A. (2008). Caracterização climática do bioma Cerrado. In: Sano, S. M., Almeida, S. P. & Ribeiro, J. F. (eds) Cerrado: Ecologia e Flora, pp. 7088. Brasília: Embrapa Cerrados and Embrapa Informação Tecnológica.
Stanley, D., Voeks, R. & Short, L. (2012). Is non-timber forest product harvest sustainable in the less developed world? A systematic review of the recent economic and ecological literature. Ethnobiol. Conserv. 1 (9): 139.
Stott, I., Townley, S. & Hodgson, D. J. (2011). A framework for studying transient dynamics of population projection matrix models. Ecol. Letters 14 (9): 959970.
Stott, I., Townley, S. & Hodgson, D. J. (2012). popdemo: an R package for population demography using projection matrix analysis. Methods Ecol. Evol. 3 (5): 797802.
Stubben, C. & Milligan, B. (2007). Estimating and analyzing demographic models using the popbio package in R. J. Statist. Softw. 22 (11): 127.
Ticktin, T. (2004). The ecological implications of harvesting non-timber forest products. J. Appl. Ecol. 41 (1): 1121.
Ticktin, T., Nantel, P., Ramirez, F. & Johns, T. (2002). Effects of variation on harvest limits for nontimber forest species in Mexico. Conservation Biol. 16 (3): 691705.
Ticktin, T., Ganesan, R., Paramesha, M. & Setti, M. (2012). Disentangling the effects of multiple anthropogenic drivers on the decline of two tropical dry forest trees. J. Appl. Ecol. 49 (4): 774784.
Tremblay, R. L., Raventós, J. & Ackerman, J. D. (2015). When stable-stage equilibrium is unlikely: integrating transient population dynamics improves asymptotic methods. Ann. Bot. 116 (3): 381390.
United States Geological Service (2015). EarthExplorer. Online. Available:
Vasquez, R. & Gentry, A. H. (1989). Use and misuse of forest-harvested fruits in the Iquitos area. Conservation Biol. 3 (4): 350361.
Zuidema, P. A. & Boot, R. G. (2002). Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of need extraction on recruitment and population dynamics. J. Trop. Ecol. 18 (1): 131.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed