Skip to main content Accessibility help
×
Home

ARE LICHEN GROWTH FORM CATEGORIES SUPPORTED BY CONTINUOUS FUNCTIONAL TRAITS: WATER-HOLDING CAPACITY AND SPECIFIC THALLUS MASS?

  • S. Wan (a1) and C. J. Ellis (a1)

Abstract

The focus of community ecology has shifted from the description of taxonomic composition towards an understanding of community assembly based on species’ ‘functional traits’. The functional trait approach is well developed for vascular plants, utilising variability of continuous phenotypic characters that affect ecological fitness, such as specific leaf area, tissue nitrogen concentration or seed mass, to explain community structure. In contrast, community assembly studies for poikilohydric cryptogamic plants and fungi, such as lichens, remain focused on broad categorical traits such as growth form difference: fruticose, foliose or crustose. This study examined intra- and interspecific variability for two highly promising continuous phenotypic measurements that affect lichen physiology and ecological fitness: water-holding capacity (WHC) and specific thallus mass (STM). Values for WHC and STM were compared within and among species, and within and among key macrolichen growth forms (fruticose and green-algal and cyanolichen foliose species), asking whether these widely used categories adequately differentiate the continuous variables (WHC and STM). We show large intra- and interspecific variability that does not map satisfactorily onto growth form categories, and on this basis provide recommendations and caveats in the future use of lichen functional traits.

Copyright

Corresponding author

E-mail for correspondence: c.ellis@rbge.org.uk

References

Hide All
Ackerly, D. D. & Cornwell, W. K. (2007). A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol. Letters 10(2): 135145.
Alam, M.A., Gauslaa, Y. & Solhaug, K. A. (2015). Soluble carbohydrates and relative growth rates in chloro-, cyano- and cephalolichens: effects of temperature and nocturnal hydration. New Phytol. 208(3): 750762.
Asplund, J. & Wardle, D. A. (2017). How lichens impact on terrestrial community and ecosystem properties. Biol. Rev. 92(3): 17201738.
Bidussi, M., Gauslaa, Y. & Solhaug, K. A. (2013). Prolonging the hydration and active metabolism from light periods into nights substantially enhances lichen growth. Planta 237(5): 13591366.
Cadotte, M. W., Mai, D. V., Jantz, S., Collins, M. D., Keele, M. & Drake, J. A. (2006). On testing the competition–colonization trade-off in a multispecies assemblage. Amer. Naturalist 168(5): 704709.
Cornwell, W. K. & Ackerly, D. D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79(1): 109126.
Ehrlén, J. & van Groenendael, J. M. (1998). The trade-off between dispersability and longevity – an important aspect of plant species diversity. Appl. Veg. Sci. 1(1): 2936.
Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Bűdel, B., Andreae, M. O. & Pöschl, U. (2012). Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geosci. 5: 459462.
Ellis, C. J. (2013). A risk-based model of climate change threat: hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany 91(1): 111.
Ellis, C. J. & Coppins, B. J. (2006). Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J. Biogeogr. 33(9): 16431656.
Ellis, C. J. & Ellis, S. C. (2013). Signatures of autogenic succession for an aspen chronosequence. J. Veg. Sci. 24(4): 688701.
Ellis, C. J., Eaton, S., Theodoropoulos, M. & Elliott, K. (2015). Epiphyte Communities and Indicator Species. An Ecological Guide for Scotland’s Woodlands. Edinburgh: Royal Botanic Garden Edinburgh.
Esseen, P.-A., Olsson, T., Coxson, D. & Gauslaa, Y. (2015). Morphology influences water storage in hair lichens from boreal forest canopies. Fungal Ecol. 18: 2635.
Gauslaa, Y. (2014). Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. Lichenologist 46(1): 116.
Gauslaa, Y. & Coxson, D. (2011). Interspecific and intraspecific variations in water storage in epiphytic old forest lichens. Botany 89(11): 787798.
Gauslaa, Y., Lie, M., Solhaug, K. A. & Ohlson, M. (2006). Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147: 406416.
Gauslaa, Y., Palmqvist, K., Solhaug, K. A., Hilmo, O., Holien, H., Nybakken, L. & Ohlson, M. (2009). Size-dependent growth of two old-growth associated macrolichen species. New Phytol. 181(3): 683692.
Gauslaa, Y., Solhaug, K. A. & Longinotti, S. (2017). Functional traits prolonging photosynthetically active periods in epiphytic cephalolichens during desiccation. Environm. Exp. Bot. 141: 8391.
Grime, J. P. (1974). Vegetation classsification by reference to strategies. Nature 250, 2631.
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer. Naturalist 111(982): 11691194.
Grime, J. P., Thompson, K., Hunt, R., Hodgson, J. G., Cornelissen, J. H. C., Rorison, I. H., Hendry, G. A. F., Ashenden, T. W., Askew, A. P., Band, S. R., Booth, R. E., Bossard, C. C., Campbell, B. D., Cooper, J. E. L., Davison, A. W., Gupta, P. L., Hall, W., Hand, D. W., Hannah, M. A., Hillier, S. H., Hodkinson, D. J., Jalili, A., Liu, Z., Mackey, J. M. L., Matthews, N., Mowforth, M. A., Neal, A. M., Reader, R. J., Reiling, K., Ross-Fraser, W., Spencer, R. E., Sutton, F., Tasker, D. E., Thorpe, P. C. & Whitehouse, J. (1997). Integrated screening validates primary axes of specialisation in plants. Oikos 79(2): 259281.
Hoffmann, L., Franco, A. C., Moreira, M. Z. & Haridasan, M. (2005). Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Funct. Ecol. 19(6): 932940.
John, E. (1992). Distribution patterns and interthalline interactions of epiphytic foliose lichens. Canad. J. Bot. 70(4): 818823.
Jung, V., Violle, C., Mondy, C., Hoffmann, L. & Muller, S. (2010). Intraspecific variability and trait-based community assembly. J. Ecol. 98(5): 11341140.
Kraft, N. J. B., Valencia, R. & Ackerly, D. D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322(5901): 580582.
Lakatos, M., Rascher, U. & Bűdel, B. (2006). Functional characteristics of corticolous lichens in the understory of a tropical lowland rain forest. New Phytol. 172: 679695.
Lange, O. L., Kilian, E. & Ziegler, H. (1986). Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71(1): 104110.
Lange, O. L., Bűdel, B., Meyer, A. & Kilian, E. (1993). Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25(2): 175189.
Lange, O. L., Green, T. G. A., Reichenberger, H. & Meyer, A. (1996). Photosynthetic depression at high thallus water contents in lichens: concurrent use of gas exchange and flourescence techniques with a cyanobacterial and a green algal Peltigera species. Bot. Acta 109(1): 4350.
Larsson, P., Solhaug, K. A. & Gauslaa, Y. (2012). Seasonal partitioning of growth into biomass and area expansion in a cephalolichen and a cyanolichen of the old forest genus Lobaria . New Phytol. 194(4): 9911000.
Lavorel, S. & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16: 545556.
Lewis, J. E. J. & Ellis, C. J. (2010). Taxon- compared with trait-based analysis of epiphytes, and the role of tree species and tree age in community composition. Plant Ecol. Divers. 3(2): 203210.
Li, Y., Shipley, B., Price, J. N., Dantas, V. de L.,Tamme, R., Westoby, M., Siefert, A., Schamp, B. S., Spasojevic, M. J., Jung, V., Laughlin, D. C., Richardson, S. J., Bagousse-Pinguet, Y. L. le, Schöb, C., Gazol, A., Prentice, H. C., Gross, N., Overton, J., Cianciaruso, M. V., Louault, F., Kamiyama, C., Nakashizuka, T., Hikosaka, K., Sasaki, T., Katabuchi, M., Dussault, C. F., Gaucherand, S., Chen, N., Vandewalle, M. & Batalha, M. A. (2018). Habitat filtering determines the functional niche occupancy of plant communities worldwide. J. Ecol. 106(3): 10011009.
Longinotti, S., Solhaug, K. A. & Gauslaa, Y. (2017). Hydration traits in cephalolichen members of the epiphytic old forest genus Lobaria (s. lat). Lichenologist 49(5): 493506.
MacDonald, A. & Coxson, D. (2013). A comparison of Lobaria pulmonaria population structure between subalpine fir (Abies lasiocarpa) and mountain alder (Alnus incana) host-tree species in British Columbia’s inland temperate rainforest. Botany 91(8): 535544.
Máguas, C., Griffiths, H. & Broadmeadow, M. S. J. (1995). Gas exchange and carbon isotope discrimination in lichens: evidence for interactions between CO2-concentrating mechanisms and diffusion limitation. Planta 196(1): 95102.
Marteinsdóttir, B., Svavarsdóttir, K. & Thórhallsdóttir, T. E. (2018). Multiple mechanisms of early plant community assembly with stochasticity driving the process. Ecology 99(1): 91102.
Matos, P., Pinho, P., Aragón, G., Martínez, I., Nunes, A., Soares, A. M. V. M. & Branquinho, C. (2015). Lichen traits responding to aridity. J. Ecol. 103(2): 451458.
McCune, B. (1993). Gradients in epiphyte biomass in three Pseudotsuga–Tsuga forests of different ages in western Oregon and Washington. Bryologist 96(3): 405411.
McCune, B., Amsberry, K. A., Camacho, F. J., Clery, S., Cole, C., Emerson, C., Felder, G., French, P., Greene, D., Harris, R., Hutten, M., Larson, B., Lesko, M., Majors, S., Markwell, T., Parker, G. G., Pendergrass, K., Peterson, E. B., Peterson, E. T., Platt, J., Proctor, J., Rambo, T. R., Rosso, A., Shaw, D., Turner, R. & Widmer, M. (1997). Vertical profile of epiphytes in a Pacific Northwest old-growth forest. N. W. Sci. 71(2): 145152.
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21(4): 178185.
Merinero, S., Hilmo, O. & Gauslaa, Y. (2014). Size is a main driver for hydration traits in cyano- and cephalolichens of boreal rainforest canopies. Fungal Ecol. 7: 5966.
Nascimbene, J. & Marini, L. (2015). Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J. Biogeogr. 42(7): 12221232.
Nelson, P. R., McCune, B., Roland, C. & Stehn, S. (2015). Non-parametric methods reveal non-linear functional trait variation of lichens along environmental and fire age gradients. J. Veg. Sci. 26: 848865.
Palmqvist, K. (1993). Photosynthetic CO2-use efficiency in lichens and their isolated photobionts: the possible role of a CO2-concentrating mechanism. Planta 191(1): 4856.
Palmqvist, K. & Sundberg, B. (2000). Light use efficiency of dry matter gain in five macro-lichens: relative impact of microclimate conditions and species-specific traits. Pl. Cell Environm. 23(1): 114.
Phinney, N. H., Solhaug, K. A. & Gauslaa, Y. (2018). Rapid resurrection of chlorolichens in humid air: specific thallus mass drives rehydration and reactivation kinetics. Environm. Exp. Bot. 148: 184191.
Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. (2014). Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 28(2): 7185.
Prieto, M., Martínez, I., Aragón, G. & Verdú, M. (2017). Phylogenetic and functional structure of lichen communities under contrasting environmental conditions. J. Veg. Sci. 28(4): 871881.
R Development Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Downloadable from https://www.R-project.org
Rasband, W. (no date). ImageJ: Image Processing and Analysis in Java. Online. Available: https://imagej.nih.gov/ij/
Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., Dantas, V. de L., de Bello, F., Duarte, L. D. S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V., Kamiyama, C., Katabuchi, M., Kembel, S. W., Kichenin, E., Kraft, N. J. B., Lagerström, A., Bagousse-Pinguet, Y. L. le, Li, Y., Mason, N., Messier, J., Nakashizuka, T., Overton, J.M., Peltzer, D.A., Pérez-Ramos, I. M., Pillar, V. D., Prentice, H. C., Richardson, S., Sasaki, T., Schamp, B. S., Schöb, C., Shipley, B., Sundqvist, M., Sykes, M. T., Vandewalle, M. & Wardle, D. A. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Letters 18(12): 14061419.
Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W., Wolseley, P. A. (2009). The Lichens of Britain and Ireland. London: British Lichen Society.
Stanton, D. E. (2015). Small scale fog-gradients change epiphytic lichen shape and distribution. Bryologist 118(3): 241244.
Stanton, D. E. & Horn, H. S. (2013). Epiphytes as “filter-drinkers”: life-form changes across a fog desert. Bryologist 116(1): 3442.
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. (2007). Let the concept of trait be functional! Oikos 116(5): 882892.
Weiher, E., Clarke, G. D. P. & Keddy, P. A. (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81(2): 309322.

Keywords

ARE LICHEN GROWTH FORM CATEGORIES SUPPORTED BY CONTINUOUS FUNCTIONAL TRAITS: WATER-HOLDING CAPACITY AND SPECIFIC THALLUS MASS?

  • S. Wan (a1) and C. J. Ellis (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed