Skip to main content Accessibility help
×
Home

Some Refined Eigenvalue Perturbation Bounds for Two-by-Two Block Hermitian Matrices

  • Xianping Wu (a1), Wen Li (a2) and Xiaofei Peng (a3)

Abstract

We consider eigenvalue perturbation bounds for Hermitian matrices, which are associated with problems arising in various computational science and engineering applications. New bounds are discussed that are sharper than some existing ones, including the well-known Weyl bound. Two numerical examples are investigated, to illustrate our theoretical presentation.

Copyright

Corresponding author

*Corresponding author. Email addresses: pphappe@sina.com (X. Wu), liwen@scnu.edu.cn (W. Li), pxf6628@163.com (X. Peng)

References

Hide All
[1]Bai, Z.-Z., Ng, M.K. and Wang, Z.-Q., Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl. 31, 410433 (2009).
[2]Bai, Z.-Z. and Li, G.-Q., Restrictively preconditioned conjugate gradient methods for systems of linear equations, IMA J. Numer. Anal. 23, 561580 (2003).
[3]Benzi, M., Golub, G.H. and Liesen, J., Numerical solution of saddle point problems, Acta Numerica 14, 1137 (2005).
[4]Cheng, G.H., Tan, Q. and Wang, Z.D., A note on eigenvalues of perturbed 2 × 2 block Hermitian matrices, Linear and Multilinear Algebra 63, 820825 (2015).
[5]Elman, H.C., Ramage, A. and Silvester, D.J., Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Softw. 33, 251268 (2007).
[6]Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge University Press (1985).
[7]Gould, N.I.M. and Simoncini, V., Spectral analysis of saddle point matrices with indefinite leading blocks, SIAM J. Matrix Anal. Appl. 31, 11521171 (2009).
[8]Li, C.-K. and Li, R.-C., A note on eigenvalues of perturbed Hermitian matrices, Linear Algebra Appl. 395, 183190 (2005).
[9]Li, W., Vong, S.W. and Peng, X.F., On eigenvalue perturbation bounds for Hermitian block tridiag-onal matrices, Appl. Num. Math. 83, 3850 (2014).
[10]Mathias, R., Quadratic residual bounds for the Hermitian eigenvalue problem, SIAM J. Matrix Anal. Appl. 19, 541550 (1998).
[11]Nakatsukasa, Y., Eigenvalue perturbation bounds for Hermitian block tridiagonal matrices, Appl. Num. Math. 62, 6778 (2012).

Keywords

Some Refined Eigenvalue Perturbation Bounds for Two-by-Two Block Hermitian Matrices

  • Xianping Wu (a1), Wen Li (a2) and Xiaofei Peng (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed