[1] Abdel-Aziz, M. R. H., Numerical safeguarded use of the implicit restarted Lanczos algorithm for solving nonlinear eigenvalue problems and itsmonotonicity analysis, PhD thesis, Rice University, USA, 1993.
[2] Amako, T., Yamamoto, Y., and Zhang, S.-L., A large-grained parallel algorithm for nonlinear eigenvalue problems and its implementation using OmniRPC, In Proceedings of the 2008 IEEE International Conference on Cluster Computing, pages 42–49, 2008.
[3] Asakura, J., Sakurai, T., Tadano, H., Ikegami, T. and Kimura, K., A numerical method for nonlinear eigenvalue problems using contour integrals, JSIAM Letters, 1 (2009), 52–55.
[4] Betcke, T. and Voss, H., A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems, Future Generation Comput. Syst., 20 (2004), 363–372.
[5] Bunse-Gerstner, A., Byers, R., Mehrmann, V. and Nichols, N. K., Numerical computation of an analytic singular value decomposition of a matrix valued function, Numer. Math., 60 (1991), 1–39.
[6] Forsythe, G., Malcolm, M. and Moler, C., Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey, 1977.
[7] Garrett, C., Bai, Z. and Li, R. -C., A nonlinear QR algorithm for banded nonlinear eigenvalue problems, ACM Trans. Math. Software, 43 (2016), 4:1–4:19.
[8] Mizuno, Y., Ohi, K., Sogabe, T., Yamamoto, Y. and Kaneda, Y., Four-point correlation function of a passive scalar field in rapidly fluctuating turbulence: numerical analysis of an exact closure equation, Phys. Rev. E, 82 (2010), 036316–036324.
[9] Nemoshkalenko, V. V. and Antonov, N. V., Computational Methods in Solid State Physics. CRC Press, 1999.
[10] Neumaier, A., Residual inverse iteration for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 22 (1985), 914–923.
[11] Ruhe, A., Algorithms for the nonlinear eigenvalue problem, SIAM J. Numer. Anal., 10 (1973), 674–689.
[12] Szyld, D. and Xue, F., Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems, Numer. Math., 123 (2013), 333–362.
[13] Szyld, D. and Xue, F., Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. I. Classical algorithms, Numer. Math., 129 (2015), 353–381.
[14] Szyld, D. and Xue, F., Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems: II. Accelerated algorithms, Numer. Math., 129 (2015), 383–403.
[15] Szyld, D. and Xue, F., Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems with variational characterizations. I. Extreme eigenvalues, Math. Comp., 85 (2016), 2887–2918.
[16] Tisseur, F. and Meerbergen, K., The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235–286.
[17] Voss, H., An Arnoldi method for nonlinear eigenvalue problems, BIT Numerical Mathematics, 44 (2004), 387–401.
[18] Voss, H., A Jacobi-Davidson method for nonlinear and nonsymmetric eigenproblems, Computers & Structures, 85 (2007), 1284–1292.
[19] Wright, K., Differential equations for the analytic singular value decomposion of a matrix, Numer. Math., 63 (1992), 283–295.
[20] Yamamoto, Y., An elementary derivation of the projection method for nonlinear eigenvalue problems based on complex contour integration, in em Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing, Proceedings of EPASA 2015, Springer (to appear).