Skip to main content Accessibility help

Simulation of a Soap Film Möbius Strip Transformation

  • Yongsam Kim (a1), Ming-Chih Lai (a2) and Yunchang Seol (a3)


If the closed wire frame of a soap film having the shape of a Möbius strip is pulled apart and gradually deformed into a planar circle, the soap film transforms into a two-sided orientable surface. In the presence of a finite-time twist singularity, which changes the linking number of the film's Plateau border and the centreline of the wire, the topological transformation involves the collapse of the film toward the wire. In contrast to experimental studies of this process reported elsewhere, we use a numerical approach based on the immersed boundary method, which treats the soap film as a massless membrane in a Navier-Stokes fluid. In addition to known effects, we discover vibrating motions of the film arising after the topological change is completed, similar to the vibration of a circular membrane.


Corresponding author

*Corresponding author. Email addresses: (Y. Kim), (M.-C. Lai), (Y. Seol)


Hide All
[1] Asmar Nakhle, H., Partial Differential Equations with Fourier Series and Boundary Value Problems, Prentice Hall (2005).
[2] Biance, A.-L., Cohen-Addad, S. and Höhler, R., Topological transition dynamics in a strained bubble cluster, Soft Matter 5, 46724679 (2009).
[3] Boudaoud, A., Partíco, P. and Amar Ben, M., The helicoid versus catenoid: Geometrically induced bifurcations, Phys. Rev. Lett. 83, 38363839 (1999).
[4] Brakke, K., The surface Evolver, Exp. Math. 1, 141165 (1992).
[5] Cantat, I., Cohen-Addad, S., Elias, F., Graner, F., Höhler, R., Pitois, O., Rouyer, F. and Saint-Jalmes, A., Foams: Structure and Dynamics, Oxford University Press (2013).
[6] Cecil, T., A numerical method for computing minimal surfaces in arbitrary dimension, J. Comput. Phys. 206, 650660 (2005).
[7] Chen, Y.-J. and Steen, P.H., Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge, J. Fluid. Mech. 341, 245267 (1997).
[8] Chopp, D.L., Computing minimal surfaces via level set curvature flow, J. Comput. Phys. 106, 7791 (1993).
[9] Colding, T.H. and Minicozzi, W.P. II, Shapes of embedded minimal surfaces, Proc. Nat. Acad. Sci. USA 103, 38363839 (2006).
[10] Concus, P., Numerical solution of the minimal surface equation., Math. Comp. 21, 340350 (1967).
[11] Courant, R., Soap film experiments with minimal surfaces, Am. Math. Mon. 47, 167174 (1940).
[12] Douglas, J., A method of the numerical solution of the Plateau problem, Ann. Math. 29, 180188 (1928).
[13] Douglas, J., The mapping theorem of Koebe and the problem of Plateau, J. Math. Phys. 10 (1931) 106130.
[14] Douglas, J., Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33, 263321 (1931).
[15] Durand, M. and Stone, H.A., Relaxation time of the topological T1 process in a two-dimensional foam, Phys. Rev. Lett. 97, 226101 (2006).
[16] Dziuk, G. and Hutchinson, J.E., The discrete Plateau problem: Algorithm and numerics, Math. Comp. 68, 123 (1999).
[17] Eggers, J., Nonlinear dynamics and the breakup of free-surface flows, Rev. Mod. Phys. 69, 865929 (1997).
[18] Eri, A. and Okumura, K., Bursting of a thin film in a confined geometry: Rimless and constant-velocity dewetting, Phys. Rev. E 82, 030601(R) (2010).
[19] Goldstein, R.E., Moffatt, H.K., Pesci, A.I. and Ricca, R.L., Soap-film Möbius strip changes topology with a twist singularity, Proc. Nat. Acad. Sci. USA 107, 2197921984 (2010).
[20] Harbrecht, H., On the numerical solution of Plateau's problem, Appl. Numer. Math. 59, 27852800 (2009).
[21] Harrison, J., Soap film solutions to Plateau's problem, J. Geom. Anal. 24, 271297 (2014).
[22] Hinata, M., Shimasaki, M. and Kiyono, T., Numerical solution of Plateau's problem by a finite element method, Math. Comp. 28, 4560 (1974).
[23] Hu, W.-F. and Lai, M.-C., An unconditionally energy stable immersed boundary method with application to vesicle dynamics, East Asian J. Appl. Math. 3, 247262 (2013).
[24] Hutzler, S., Saadatfar, M., van der Net, A., Weaire, D., Cox, S.J., The dynamics of a topological change in a system of soap films, Colloid. Surface A 323, 123131 (2008).
[25] Jones, S.A. and Cox, S.J., The transition from three-dimensional to two-dimensional foam structures, Eur. Phys. J. E 34:82, (2011).
[26] Kim, Y. and Peskin, C.S., 2-D parachute simulation by the immersed boundary method, SIAM J. Sci. Comput. 28, 22942312 (2006).
[27] Kim, Y. and Lai, M.-C., Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method, J. Comput. Phys. 229, 48404853 (2010).
[28] Kim, Y., Lai, M.-C. and Peskin, C.S., Numerical simulations of two-dimensional foam by the immersed boundary method, J. Comput. Phys. 229, 51945207 (2010).
[29] Kim, Y., Lai, M.-C., Peskin, C.S. and Seol, Y., Numerical simulations of three-dimensional foam by the immersed boundary method, J. Comput. Phys. 269, 121 (2014).
[30] Maggioni, F. and Ricca, R.L., Writhing and coiling of closed filaments, Proc. R. Soc. A 462, 31513166 (2006).
[31] Le Merrer, M., Cohen-Addad, S. and Höhler, R., Bubble rearrangement duration in foams near the jamming point, Phys. Rev. Lett. 108, 188301 (2012).
[32] Meeks, W.W. III and Yau, S.-T., The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z. 179, 151168 (1982).
[33] Nitsche, J.C.C., A new uniqueness theorem for minimal surfaces, Arch. Ration. Mech. Anal. 52, 319329 (1973).
[34] Nitsche, M. and Steen, P.H., Numerical simulations of inviscid capillary pinchoff, J. Comput. Phys. 200, 299324 (2004).
[35] Osher, S.J. and Sethian, J.A., Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79, 1249 (1988).
[36] Osserman, R., A Survey of Minimal Surfaces, Dover Publications (2014).
[37] Peskin, C.S., Flow patterns around heart valves: A numerical method, J. Comput. Phys. 10, 252271 (1972).
[38] Peskin, C.S. and McQueen, D.M., Three dimensional computational method for flow in the heart: Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys. 81, 372405 (1989).
[39] Peskin, C.S., The immersed boundary method, Acta Numerica, 11, 479517 (2002).
[40] Pickover, C.A., The Möbius strip: Dr. August Möbius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology, Basic Books (2007).
[41] Plateau, J., Statique Expérimentale et Théoretique des Liquides Soumis aux Seules Forces Moléculaires, Gauthier-Villars (1873).
[42] Rado, T., The problem of the least area and the problem of Plateau, Math. Z. 32, 763796 (1930).
[43] Rado, T., On Plateau's problem, Ann. Math. 31, 457469 (1930).
[44] Robinson, N.D. and Steen, P.H., Observations of singularity formation during the capillary collapse and bubble pinch-off a soap film bridge, J. Colloid. Interf. Sci. 241, 448458 (2001).
[45] Saye, R.I. and Sethian, J.A., Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams, Science 340, 720724 (2013).
[46] Taylor, J.E., Selected Works of Frederick J. Almgren, Jr., American Mathematical Society (1999).
[47] Tråsdahl, Ø. and Rønquist, E.M., High order numerical approximation of minimal surfaces, J. Comput. Phys. 230, 47954810 (2011).
[48] Weaire, D. and Hutzler, S., The Physics of Foams, Oxford University Press (1999).


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed