[1]
Anderson, B.D.O., Agathoklis, P., Jury, E.I., Mansour, M.. Stability and the matrix Lyapunov equation for discrete 2-dimensional systems, IEEE Trans. Circuits Syst.
33 (1986) 261–267.

[2]
Bhatia, R., Rosenthal, P.. How and why to solve the operator equation AX – X B = Y, Bull. Lond. Math. Soc.
29 (1997) 1–21.

[3]
Benner, P., Li, R.-C., Truhar, N.. On the ADI method for Sylvester equations, J. Comput. Appl. Math.
233 (2009) 1035–1045.

[4]
Bai, Z.-Z., Golub, G. H., Ng, M.K.. On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl.
14 (2007) 319–335.

[5]
Bai, Z.-Z., On Hermitian and skew-Hermitian spliting iteration methods for continuous Sylvester equations, J. Comput. Math.
29 (2011) 185–198.

[6]
Bai, Z.-Z., Golub, G. H., Lu, L.-Z., Yin, J.-F.. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput.
26 (2005) 844–863.

[7]
Bai, Z.-Z., Golub, G. H., Ng, M. K.. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003) 603–626.

[8]
Bai, Z.-Z., Deng, Y.-B., Gao, Y.-H.. Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numer. Linear Algebra Appl., 13 (2006) 801–823.

[9]
Bai, Z.-Z., A class of two-stage iterative methods for systmes of weakly nonlinear equations, Numer. Algorithms, 14 (1997) 295–319.

[10]
Bai, Z.-Z., Benzi, M., Chen, F.. Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87 (2010) 93–111.

[11]
Bai, Z.-Z., Benzi, M., Chen, F.. On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56 (2011) 297–317.

[12]
Bai, Z.-Z., Guo, X.-P.. On Newton-HSS methods for systems of nonlinear equations with positive definite Jacobian matrices, J. Comput. Math., 28 (2010) 235–260.

[13]
Bai, Z.-Z., Several splittings for non-Hermitian linear systems, Sci. China (Ser. A: Math), 51(2008) 1339–1348.

[14]
Bai, Z.-Z., Golub, G. H., Li, C.-K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput., 76 (2007) 287–298.

[15]
Bai, Z.-Z., Golub, G. H., Ng, M. K., On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 428 (2008) 413–440.

[16]
Bai, Z.-Z., Huang, Y.-M., Ng, M. K.. On preconditioned iterative methods for Burgers equations, SIAM J. Sci. Comput., 29 (2007) 415–439.

[17]
Bai, Z.-Z., Ng, M. K.. Preconditioners for nonsymmetric block Toeplitz-like-plus-diagonal linear systems, Numer. Math., 96 (2003) 197–220.

[18]
Bai, Z.-Z., Yin, J.-F., Su, Y.-F.. A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24 (2006) 539–552.

[19]
Calvetti, D., Reichel, L.. Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl.
17(1996) 165–186.

[20]
Dong, Y.-X., Gu, C.-Q.. *On PMHSS iteration methods for continuous Sylvester equations*, J. Comput. Math., 2016, to appear.

[21]
Druskin, V., Knizhnerman, L., Simoncini, V.. Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation, SIAM J. Numer. Anal.
49 (2011) 1875–1898.

[22]
Friswell, M. I., Mottershead, J. E.. Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, Dordrecht, Boston and London, 1995.

[23]
Golub, G. H., Loan, C.F.V.. Matrix Computations, Third edition, The Johns Hopkins University Press, Baltimore and London, MD, 1996.

[24]
Golub, G. H., Nash, S. G., Loan, C. F. V.. A Hessenberg-Schur method for the problem AX + X B = C, IEEE Trans. Automat. Control
24 (1979) 909–913.

[25]
Hu, D.-Y., Reichel, L.. Krylov-subspace methods for the Sylvester equation, Linear Algebra Appl.
172 (1992) 283–313.

[26]
Halanay, A., aˇsvan, V. R.. Applications of Lyapunov Methods in Stability, Kluwer Academic Publishers, Dordrecht, Boston and London, 1993.

[27]
Ilic, M.D.. New approaches to voltage monitoring and control, IEEE Control Syst. Mag.
9 (1989) 5–11.

[28]
Jbilou, K.. Low rank approximate solutions to large Sylvester matrix equations, Appl. Math. Comput.
177 (2006) 365–376.

[29]
Lewis, F. L., Mertzios, V. G., Vachtsevanos, G., Christodoulou, M. A.. Analysis of bilinear systems using walsh functions, IEEE Trans. Automat. Control
35 (1990) 119–123.

[30]
Liao, A.-P., Bai, Z.-Z., Lei, Y.. Best approximate solution of matrix equation AX B + CY D = E, SIAM J. Matrix Anal. Appl.
27 (2005) 675–688.

[31]
Obinata, G., Anderson, B.D.O.. Model Reduction For Control System Design, Springer-Verlag, London, 2001.

[32]
van der Schaft, A.. L2-Gain and Passivity Techniques in Nonlinear Control, 2nd edition, Springer-Verlag, London, 2000.

[33]
Simoncini, V.. A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput.
29 (2007) 1268–1288.

[34]
Zhou, R., Wang, X., Tang, X.-B.. A generalization of the Hermitian and skew-Hermitian splitting iteration method for solving Sylvester equations, Appl. Math. Comput.
271 (2015) 609–617.

[35]
Wang, X., Dai, L., Liao, D.. A modified gradient based algorithm for solving Sylvester equations, Appl. Math. Comput.
218 (2012) 5620–5628.

[36]
Niu, Q., Wang, X., Lu, L.-Z.. A relaxed gradient based algorithm for solving Sylvester equations, Asian J. Control
13 (2011) 461–464.

[37]
Wang, X., Li, W.-W., Mao, L.-Z.. On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation AX + X B = C, Comput. Math. Appl.
66 (2013) 2352–2361.

[38]
Zhou, R., Wang, X., Zhou, P.. A modified HSS iteration method for solving the complex linear matrix equation AX B = C, J. Comput. Math.
34 (2016) 437–450.

[39]
Wang, X., Li, W.-W.. A modified GPSS method for non-Hermitian positive definite linear systems, Appl. Math. Comput.
234 (2014) 253–259.

[40]
Wang, X., Li, Y., Dai, L.. On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation AX B = C, Comput. Math. Appl.
234 (2014) 253–259.

[41]
Zheng, Q.-Q., Ma, C.-F.. On normal and skew-Hermitian splitting iteration methods for large sparse continuous Sylvester equations, J. Comput. Appl. Math.
268 (2014) 145–154.