[1]
West, B.J., Bologna, M. and Grigolini, P., Physics of Fractal Operators, Springer, New York (2003).

[2]
Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).

[3]
Metzler, R. and Klafter, J., The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep.
339, 1–77 (2000).

[4]
Herrmann, R., Fractional Calculus: An Introduction for Physicists, World Scientific, Hackensack, New Jersey (2011).

[5]
Henry, B.I. and Wearne, S.L., Fractional reaction-diffusion, Phys. A
276, 448–455 (2000).

[6]
Yuste, S.B. and Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal.
42, 1862–1874 (2005).

[7]
Schneider, W.R. and Wyss, W., Fractional diffusion and wave equations, J. Math. Phys.
30, 134–144 (1989).

[8]
Wyss, W., The fractional diffusion equation, J. Math. Phys.
27, 2782–2785 (1986).

[9]
Gorenflo, R., Luchko, Y. and Mainardi, F., Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math.
118, 175–191 (2000).

[10]
Langlands, T. and Henry, B., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys.
205, 719–736 (2005).

[11]
Zhuang, P. and Liu, F., Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput.
22, 87–99 (2006).

[12]
Liu, Q., Gu, Y.T., Zhuang, P., Liu, F. and Nie, Y.F., An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech.
48, 1–12 (2011).

[13]
Zhang, Y.N. and Sun, Z., Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys.
230, 8713–8728 (2011).

[14]
Wang, Y.M., *Maximum norm error estimates of ADI methods for a two dimensional fractional sub-diffusion equation*, Adv. Math. Phys. 1-10, Article ID 293706 (2013).

[15]
Cui, M., Convergence analysis of high-order compact alternating direction implicit schemes for the two dimensional time fractional diffusion equation, Numer. Algorithms
62, 383–409 (2013).

[16]
Sun, H., Chen, W. and Sze, K.Y., A semi-discrete finite element method for a class of time-fractional diffusion equations, Phil. Trans. R. Soc. A
371, 20120268 (2013).

[17]
Guo, B., Xu, Q. and Zhu, A., A second-order finite difference method for two-dimensional fractional percolation equations, Commun. Comput. Phys.
19, 733–757 (2016).

[18]
Li, G., Sun, C., Jia, X. and Du, D., Numerical solution to the multi-term time fractional diffusion equation in a finite domain, Numer. Math. Theor. Meth. Appl.
9, 337–357 (2016).

[19]
Yang, X., Zhang, H. and Xu, D., Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys.
256, 824–837 (2014).

[20]
Yan, L. and Yang, F., A kansa-type MFS scheme for two dimensional time fractional diffusion equations, Eng. Anal. Bound. Elem.
37, 1426–1435 (2013).

[21]
Jin, B., Lazarov, R. and Zhou, Z., Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal.
51, 445–466 (2013).

[22]
Gao, G., Sun, Z. and Zhang, H., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys.
259, 33–50 (2014).

[23]
Li, D., Zhang, C., Ran, M., A linear finite difference scheme for generalized time fractional Burgers equation, Appl. Math. Model.
40, 6069–6081 (2016).

[24]
Gao, G. and Sun, Z., The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain, J. Comput. Phys.
236, 443–460 (2013).

[25]
Brunner, H., Han, H. and Yin, D., Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain, J. Comput. Phys.
276, 541–562 (2014).

[26]
Ghaffari, R. and Hosseini, S.M., Obtaining artificial boundary conditions for fractional sub-diffusion equation on space two-dimensional unbounded domains, Comput. Math. Appl.
68, 13–26 (2014).

[27]
Dea, J.R., Absorbing boundary conditions for the fractional wave equation, Appl. Math. Comput.
219, 9810–9820 (2013).

[28]
Awotunde, A.A., Ghanam, R.A. and Tatar, N., Artificial boundary condition for a modified fractional diffusion problem, Bound. Value Probl.
1, 1–17 (2015).

[29]
Arnold, A., Ehrhardt, M., Schulte, M. and Sofronov, I., Discrete transparent boundary conditions for the Schrödinger equation on circular domains, Commun. Math. Sci.
10, 889–916 (2012).

[30]
Han, H. and Huang, Z., Exact artificial boundary conditions for Schrödinger equation in ℝ^{2}
, Commun. Math. Sci.
2, 79–94 (2004).

[31]
Li, D. and Zhang, J., Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain, J. Comput. Phys.
322, 415–428 (2016).

[32]
Podlubny, I., Fractional Differential Equations, Academic Press, San Diego (1999).

[33]
Han, H. and Wu, X., Artificial Boundary Method, Springer-Verlag, Berlin, Heidelberg and Tsinghua University Press, Beijing (2013).

[34]
Han, H. and Bao, W., High-order local artificial boundary conditions for problems in unbounded domains, Comput. Methods Appl. Mech. Eng.
188, 455–471 (2000).

[35]
Li, H., Wu, X. and Zhang, J., Local artificial boundary conditions for Schrödinger and heat equations by using high-order azimuth derivatives on circular artificial boundary, Comput. Phys. Commun.
185, 1606–1615 (2014).

[36]
Oldham, K.B. and Spanier, J., The Fractional Calculus, Academic Press, New York (1974).

[37]
Diethelm, K., Ford, N.J., Freed, A.D. and Yu. Luchko, A selection of numerical methods, Comput. Methods Appl. Mech. Eng.
194, 743–773 (2005).

[38]
Zhang, J., Han, H. and Brunner, H., Numerical blow-up of semilinear parabolic PDEs on unbounded domains in ℝ^{2}
, J. Sci. Comput.
49, 367–382 (2011).

[39]
Zheng, C., Approximation, stability and fast evaluation of exact artificial boundary condition for one-dimensional heat equation, J. Comput. Math.
25, 730–745 (2007).

[40]
Li, J., A fast time stepping method for evaluating fractional integrals, SIAM J. Sci. Comput.
31, 4696–4714 (2010).

[41]
Jiang, S., Zhang, J., Zhang, Q. and Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys.
21, 650–678 (2017).

[42]
Jin, X., Lin, F. and Zhao, Z., Preconditioned iterative methods for two-dimensional space-fractional diffusion equations, Commun. Comput. Phys.
18, 469–488 (2015).

[43]
Wu, S. and Zhou, T., Fast parareal iterations for fractional diffusion equations, J. Comput. Phys.
329, 210–226 (2017).

[44]
Zhang, Q., Zhang, J., Jiang, S. and Zhang, Z., *Numerical solution to a linearized time fractional KdV equation on unbounded domains*, Math. Comput., to appear (2017).