[1]
Arrow, K. J., Hurwicz, L., and Uzawa, H., Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford, 1958.

[2]
Bai, Z.-Z., Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput., 75 (2006), pp. 791–815.

[3]
Bai, Z.-Z., Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 16 (2009), pp. 447–479.

[4]
Bai, Z.-Z., Block preconditioners for elliptic PDE-constrained optimization problems, Computing, 91 (2011), pp. 379–395.

[5]
Bai, Z.-Z., Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models, Numer. Linear Algebra Appl., 19 (2012), pp. 914–936.

[6]
Bai, Z.-Z., and Golub, G. H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), pp. 1–23.

[7]
Bai, Z.-Z., Golub, G. H., and Pan, J.-Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), pp. 1–32.

[8]
Bai, Z.-Z., and Hadjidimos, A., Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix, Linear Algebra Appl., 463 (2014), pp. 322–339.

[9]
Bai, Z.-Z., Ng, M. K., and Wang, Z.-Q., Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 410–433.

[10]
Bai, Z.-Z., Parlett, B. N., and Wang, Z.-Q., On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), pp. 1–38.

[11]
Bai, Z.-Z., and Wang, Z.-Q., On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), pp. 2900–2932.

[12]
Bai, Z.-Z., Yin, J.-F., and Su, Y.-F., A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24 (2006), pp. 539–552.

[13]
Benzi, M., Golub, G. H., and Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1–137.

[14]
Bramble, J. H., Pasciak, J. E., and Vassilev, A. T., Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092.

[15]
Brezzi, F., and Fortin, M., Mixed and hybrid finite elements methods, Springer Series in Computational Mathematics, Vol. 15, Springer-Verlag, New York, 2012.

[16]
Cao, Y., Du, J., and Niu, Q., Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014), pp. 239–250.

[17]
Cao, Y., Yao, L.-Q., Jiang, M.-Q., and Niu, Q., A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 31 (2013), pp. 398–421.

[18]
Cao, Y., and Yi, S.-C., A class of Uzawa–PSS iteration methods for nonsingular and singular non-Hermitian saddle point problems, Appl. Math. Comput., 275 (2016), pp. 41–49.

[19]
Elman, H. C., and Golub, G. H., Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), pp. 1645–1661.

[20]
Fischer, B., Ramage, A., Silvester, D. J., and Wathen, A. J., Minimum residual methods for augmented systems, BIT Numer. Math., 38 (1998), pp. 527–543.

[21]
Golub, G. H., and Wathen, A. J., An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput., 19 (1998), pp. 530–539.

[22]
Jiang, M.-Q., and Cao, Y., On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), pp. 973–982.

[23]
Keller, C., Gould, N. I. M., and Wathen, A. J., Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.

[24]
Leem, K. H., Oliveira, S. P., and Stewart, D. E., Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations, Numer. Linear Algebra Appl., 11 (2004), pp. 293–308.

[25]
Miller, J. J. H., On the location of zeros of certain classes of polynomials with applications to numerical analysis, J. Inst. Math. Appl., 8 (1971), pp. 397–406.

[26]
Saad, Y., Iterative Methods for Sparse Linear Systems, Second Edition, Society for Industrial and Applied Mathematics, Philadelphia, 2003.

[27]
Santos, C. H., Silva, B. P. B., and Yuan, J.-Y., Block SOR methods for rank-deficient least-squares problems, J. Comput. Appl. Math., 100 (1998), pp. 1–9.

[28]
Wu, X., Silva, B. P. B., and Yuan, J.-Y., Conjugate gradient method for rank deficient saddle point problems, Numer. Algor., 35 (2004), pp. 139–154.

[29]
Yang, A.-L., Li, X., and Wu, Y.-J., On semi-convergence of the Uzawa–HSS method for singular saddle-point problems, Appl. Math. Comput., 252 (2015), pp. 88–98.

[30]
Yang, A.-L., and Wu, Y.-J., The Uzawa–HSSmethod for saddle-point problems, Appl. Math. Lett., 38 (2014), pp. 38–42.

[31]
Yun, J.-H., Variants of the Uzawa method for saddle point problems, Comput. Math. Appl., 65 (2013), pp. 1037–1046.

[32]
Zhang, J.-J., and Shang, J.-J., A class of Uzawa–SOR methods for saddle point problems, Appl. Math. Comput., 216 (2010), pp. 2163–2168.