[1]Arioli, M., Manzini, G., A null space method for mixed finite-element approximations of Darcy's equation, Commun. Numer. Methods Engrg. 18, 645–657 (2002).

[2]Björck, A., Numerical Methods for Least Squares Problems, SIAM, Philadelphia (1996).

[3]Benzi, M., Solution of equality-constrained quadratic programming problems by a projection iterative method, Rend. Mat. Appl. 13, 275–296 (1993).

[4]Bai, Z.-Z., Benzi, M. and Chen, F., Modified HSS iteration methods for a class of complex symmetric linear systems, Computing 87, 93–111 (2010).

[5]Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer, New York (1991).

[6]Benzi, M. and Golub, G.H., A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl. 26, 20–41 (2004).

[7]Bai, Z.-Z. and Golub, G.H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems, IMA J. Numer. Anal. 27, 1–23 (2007).

[8]Benzi, M., Golub, G.H. and Liesen, J., Numerical solution of saddle point problems, Acta Numer. 14, 1–137 (2005).

[9]Bai, Z.-Z., Golub, G.H. and Li, C.-K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput. 76, 287–298 (2007).

[10]Bai, Z.-Z., Golub, G.H., Lu, L.-Z. and Yin, J.-F., Block triangular and skew-Hermitian splitting method for positive-definite linear systems, SIAM J. Sci. Comput. 26, 844–863 (2005).

[11]Bai, Z.-Z., Golub, G.H. and Ng, M.K., On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl. 14, 319–335 (2007).

[12]Bai, Z.-Z., Golub, G.H. and Ng, M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24, 603–626 (2003).

[13]Bai, Z.-Z., Golub, G.H. and Pan, J.-Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math. 98, 1–32 (2004).

[14]Bramble, J.H., Pasciak, J.E. and Vassilev, A.T., Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34, 1072–1092 (1997).

[15]Bai, Z.-Z., Parlett, B.N. and Wang, Z.-Q., On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102, 1–38 (2005).

[16]Bai, Z.-Z. and Wang, Z.-Q., On parameterised inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428, 2900–2932 (2008).

[17]Bank, R.E., Welfert, B.D. and Yserentant, H., A class of iterative methods for solving saddle point problems, Numer. Math. 56, 645–666 (1990).

[18]Dyn, N. and Ferguson, W.E., The numerical solution of equality constrained quadratic programming problems, Math. Comput. 41, 165–170 (1983).

[19]Elman, H.C., Preconditioners for saddle point problems arising in computational fluid dynamics, Appl. Numer. Math. 43, 75–89 (2002).

[20]Elman, H.C. and Golub, G.H., Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal. 31, 1645–1661 (1994).

[21]Elman, H.C., Ramage, A. and Silvester, D.J., Algorithm 866: IFISS, a MATLAB toolbox for modelling incompressible flow, ACM Trans. Math. Software 33, 1–18 (2007).

[22]Elman, H.C., Silvester, D.J. and Wathen, A.J., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math. 90, 665–688 (2002).

[23]Fortin, M. and Glowinski, R., Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems, Stud. Math. Appl. 15, North-Holland, Amsterdam (1983).

[24]Feng, X.-L. and Shao, L., On the generalized SOR-like methods for saddle point problems, J. Appl. Math. Inform. 28, 663–677 (2010).

[25]Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer, New York (1984).

[26]Gould, N.I.M., Hribar, M.E. and Nocedal, J., On the solution of equality constrained quadratic programming problems arising in optimization, SIAM J. Sci. Comput. 23, 1376–1395 (2001).

[27]Guo, P., Li, C.-X. and Wu, S.-L., A modified SOR-like methodfor the augmented systems, J. Comput. Appl. Math. 274, 58–69 (2015).

[28]Gill, P.E., Murray, W., Ponceleón, D.B. and Saunders, M.A., Preconditioners for indefinite systems arising in optimization, SIAM J. Matrix Anal. Appl. 13, 292–311 (1992).

[29]Golub, G.H. and Wathen, A.J., An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput. 19, 530–539 (1998).

[30]Golub, G.H., Wu, X. and Yuan, J.-Y., SOR-like methods for augmented systems, BIT Numer. Math. 41, 71–85 (2001).

[31]Haws, J.C., *Preconditioning KKT Systems* Ph.D. thesis, Department of Mathematics, North Carolina State University, Raleigh (2002).

[32]Haber, E., Ascher, U.M. and Oldenburg, D., On optimization techniques for solving nonlinear inverse problems, Inverse Probl. 16, 1263–1280 (2000).

[33]Huang, N. and Ma, C.-F., The BGS-Uzawa and BJ-Uzawa iterative methods for solving the saddle point problem Appl. Math. Comput. 256, 94–108 (2015).

[34]Huang, N. and Ma, C.-F., The nonlinear inexact Uzawa hybrid algorithms based on one-step Newton method for solving nonlinear saddle-point problems, Appl. Math. Comput. 270, 291–311 (2015).

[35]Klawonn, A., Block-triangular preconditioners for saddle point problems with a penalty term, SIAM J. Sci. Comput. 19, 172–184 (1998).

[36]Krukier, L.A., Chikina, L.G. and Belokon, T.V., Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations, Appl. Numer. Math. 41, 89–105 (2002).

[37]Keller, C., Gould, N.I.M. and Wathen, A.J., Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl. 21, 1300–1317 (2000).

[38]Krukier, L.A., Krukier, B.L. and Ren, Z.-R., Generalized skew-Hermitian triangular splitting iteration methods for saddle-point linear systems, Numer. Linear Algebra Appl. 21, 152–170 (2014).

[39]Krukier, L.A., Martynova, T.S. and Bai, Z.-Z., Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems, J. Comput. Appl. Math. 232, 3–16 (2009).

[40]Murphy, M.F., Golub, G.H. and Wathen, A.J., A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput. 21, 1969–1972 (2000).

[41]Plemmons, R.J., A parallel block iterative scheme applied to computations in structural analysis, SIAM J. Alg. Disc. Meth. 7, 337–347 (1986).

[42]Perugia, I. and Simoncini, V., Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations, Numer. Linear Algebra Appl. 7, 585–616 (2000).

[43]Rusten, T. and Winther, R., A preconditioned iterative method for saddlepoint problems, SIAM J. Matrix Anal. Appl. 13, 887–904 (1992).

[44]Ren, W.-Q. and Zhao, J.-X., Iterative methods with preconditioners for indefinite systems, J. Comput. Math. 17, 89–96 (1999).

[45]Selberherr, S., Analysis and Simulation of Semiconductor Devices, Springer, New York (1984).

[46]Strikwerda, J.C., An iterative method for solving finite difference approximations to the Stokes equations, SIAM J. Numer. Anal. 21, 447–458 (1984).

[47]Sartoris, G.E., A 3D rectangular mixed finite element method to solve the stationary semiconductor equations, SIAM J. Sci. Comput. 19, 387–403 (1998).

[48]Sarin, V. and Sameh, A., An efficient iterative method for the generalized Stokes problem SIAM J. Sci. Comput. 19, 206–226 (1998).

[49]Varga, R.S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs (1962).

[50]Wang, L. and Bai, Z.-Z., Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts, BIT Numer. Math. 44, 363–386 (2004).

[51]Zulehner, W., Analysis ofiterative methods for saddle point problems: a unified approach, Math. Comput. 71, 479–505 (2002).

[52]Zhang, G.-F. and Lu, Q.-H., On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 219, 51–58 (2008).

[53]Zhang, G.-F., Yang, J.-L. and Wang, S.-S., On generalized parameterised inexact Uzawa method for a block two-by-two linear system, J. Comput. Appl. Math. 255, 193–207 (2014).