Skip to main content Accessibility help
×
Home

A New GSOR Method for Generalised Saddle Point Problems

  • Na Huang (a1) and Chang-Feng Ma (a1)

Abstract

A novel generalised successive overrelaxation (GSOR) method for solving generalised saddle point problems is proposed, based on splitting the coefficient matrix. The proposed method is shown to converge under suitable restrictions on the iteration parameters, and we present some illustrative numerical results.

Copyright

Corresponding author

*Corresponding author. Email address:macf@fjnu.edu.cn (C.-F. Ma)

References

Hide All
[1]Arioli, M., Manzini, G., A null space method for mixed finite-element approximations of Darcy's equation, Commun. Numer. Methods Engrg. 18, 645657 (2002).
[2]Björck, A., Numerical Methods for Least Squares Problems, SIAM, Philadelphia (1996).
[3]Benzi, M., Solution of equality-constrained quadratic programming problems by a projection iterative method, Rend. Mat. Appl. 13, 275296 (1993).
[4]Bai, Z.-Z., Benzi, M. and Chen, F., Modified HSS iteration methods for a class of complex symmetric linear systems, Computing 87, 93111 (2010).
[5]Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer, New York (1991).
[6]Benzi, M. and Golub, G.H., A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl. 26, 2041 (2004).
[7]Bai, Z.-Z. and Golub, G.H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems, IMA J. Numer. Anal. 27, 123 (2007).
[8]Benzi, M., Golub, G.H. and Liesen, J., Numerical solution of saddle point problems, Acta Numer. 14, 1137 (2005).
[9]Bai, Z.-Z., Golub, G.H. and Li, C.-K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput. 76, 287298 (2007).
[10]Bai, Z.-Z., Golub, G.H., Lu, L.-Z. and Yin, J.-F., Block triangular and skew-Hermitian splitting method for positive-definite linear systems, SIAM J. Sci. Comput. 26, 844863 (2005).
[11]Bai, Z.-Z., Golub, G.H. and Ng, M.K., On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl. 14, 319335 (2007).
[12]Bai, Z.-Z., Golub, G.H. and Ng, M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24, 603626 (2003).
[13]Bai, Z.-Z., Golub, G.H. and Pan, J.-Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math. 98, 132 (2004).
[14]Bramble, J.H., Pasciak, J.E. and Vassilev, A.T., Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal. 34, 10721092 (1997).
[15]Bai, Z.-Z., Parlett, B.N. and Wang, Z.-Q., On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102, 138 (2005).
[16]Bai, Z.-Z. and Wang, Z.-Q., On parameterised inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428, 29002932 (2008).
[17]Bank, R.E., Welfert, B.D. and Yserentant, H., A class of iterative methods for solving saddle point problems, Numer. Math. 56, 645666 (1990).
[18]Dyn, N. and Ferguson, W.E., The numerical solution of equality constrained quadratic programming problems, Math. Comput. 41, 165170 (1983).
[19]Elman, H.C., Preconditioners for saddle point problems arising in computational fluid dynamics, Appl. Numer. Math. 43, 7589 (2002).
[20]Elman, H.C. and Golub, G.H., Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal. 31, 16451661 (1994).
[21]Elman, H.C., Ramage, A. and Silvester, D.J., Algorithm 866: IFISS, a MATLAB toolbox for modelling incompressible flow, ACM Trans. Math. Software 33, 118 (2007).
[22]Elman, H.C., Silvester, D.J. and Wathen, A.J., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math. 90, 665688 (2002).
[23]Fortin, M. and Glowinski, R., Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems, Stud. Math. Appl. 15, North-Holland, Amsterdam (1983).
[24]Feng, X.-L. and Shao, L., On the generalized SOR-like methods for saddle point problems, J. Appl. Math. Inform. 28, 663677 (2010).
[25]Glowinski, R., Numerical Methods for Nonlinear Variational Problems, Springer, New York (1984).
[26]Gould, N.I.M., Hribar, M.E. and Nocedal, J., On the solution of equality constrained quadratic programming problems arising in optimization, SIAM J. Sci. Comput. 23, 13761395 (2001).
[27]Guo, P., Li, C.-X. and Wu, S.-L., A modified SOR-like methodfor the augmented systems, J. Comput. Appl. Math. 274, 5869 (2015).
[28]Gill, P.E., Murray, W., Ponceleón, D.B. and Saunders, M.A., Preconditioners for indefinite systems arising in optimization, SIAM J. Matrix Anal. Appl. 13, 292311 (1992).
[29]Golub, G.H. and Wathen, A.J., An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput. 19, 530539 (1998).
[30]Golub, G.H., Wu, X. and Yuan, J.-Y., SOR-like methods for augmented systems, BIT Numer. Math. 41, 7185 (2001).
[31]Haws, J.C., Preconditioning KKT Systems Ph.D. thesis, Department of Mathematics, North Carolina State University, Raleigh (2002).
[32]Haber, E., Ascher, U.M. and Oldenburg, D., On optimization techniques for solving nonlinear inverse problems, Inverse Probl. 16, 12631280 (2000).
[33]Huang, N. and Ma, C.-F., The BGS-Uzawa and BJ-Uzawa iterative methods for solving the saddle point problem Appl. Math. Comput. 256, 94108 (2015).
[34]Huang, N. and Ma, C.-F., The nonlinear inexact Uzawa hybrid algorithms based on one-step Newton method for solving nonlinear saddle-point problems, Appl. Math. Comput. 270, 291311 (2015).
[35]Klawonn, A., Block-triangular preconditioners for saddle point problems with a penalty term, SIAM J. Sci. Comput. 19, 172184 (1998).
[36]Krukier, L.A., Chikina, L.G. and Belokon, T.V., Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations, Appl. Numer. Math. 41, 89105 (2002).
[37]Keller, C., Gould, N.I.M. and Wathen, A.J., Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl. 21, 13001317 (2000).
[38]Krukier, L.A., Krukier, B.L. and Ren, Z.-R., Generalized skew-Hermitian triangular splitting iteration methods for saddle-point linear systems, Numer. Linear Algebra Appl. 21, 152170 (2014).
[39]Krukier, L.A., Martynova, T.S. and Bai, Z.-Z., Product-type skew-Hermitian triangular splitting iteration methods for strongly non-Hermitian positive definite linear systems, J. Comput. Appl. Math. 232, 316 (2009).
[40]Murphy, M.F., Golub, G.H. and Wathen, A.J., A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput. 21, 19691972 (2000).
[41]Plemmons, R.J., A parallel block iterative scheme applied to computations in structural analysis, SIAM J. Alg. Disc. Meth. 7, 337347 (1986).
[42]Perugia, I. and Simoncini, V., Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations, Numer. Linear Algebra Appl. 7, 585616 (2000).
[43]Rusten, T. and Winther, R., A preconditioned iterative method for saddlepoint problems, SIAM J. Matrix Anal. Appl. 13, 887904 (1992).
[44]Ren, W.-Q. and Zhao, J.-X., Iterative methods with preconditioners for indefinite systems, J. Comput. Math. 17, 8996 (1999).
[45]Selberherr, S., Analysis and Simulation of Semiconductor Devices, Springer, New York (1984).
[46]Strikwerda, J.C., An iterative method for solving finite difference approximations to the Stokes equations, SIAM J. Numer. Anal. 21, 447458 (1984).
[47]Sartoris, G.E., A 3D rectangular mixed finite element method to solve the stationary semiconductor equations, SIAM J. Sci. Comput. 19, 387403 (1998).
[48]Sarin, V. and Sameh, A., An efficient iterative method for the generalized Stokes problem SIAM J. Sci. Comput. 19, 206226 (1998).
[49]Varga, R.S., Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs (1962).
[50]Wang, L. and Bai, Z.-Z., Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts, BIT Numer. Math. 44, 363386 (2004).
[51]Zulehner, W., Analysis ofiterative methods for saddle point problems: a unified approach, Math. Comput. 71, 479505 (2002).
[52]Zhang, G.-F. and Lu, Q.-H., On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 219, 5158 (2008).
[53]Zhang, G.-F., Yang, J.-L. and Wang, S.-S., On generalized parameterised inexact Uzawa method for a block two-by-two linear system, J. Comput. Appl. Math. 255, 193207 (2014).

Keywords

MSC classification

A New GSOR Method for Generalised Saddle Point Problems

  • Na Huang (a1) and Chang-Feng Ma (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed