[1]
Pei, W.B., The construction of simulation algorithms for laser fusion, Commun. Comput. Phys.
2, 255–270 (2007).

[2]
Yue, X.Q., Shu, S., Xu, X.W. and Zhou, Z.Y., An adaptive combined preconditioner with applications in radiation diffusion equations, Commun. Comput. Phys.
18, 1313–1335 (2015).

[3]
Pomraning, G.C., The Equations of Radiation Hydrodynamics, Pergamon (1973).

[4]
Haines, B.M., Grinstein, F.F. and Fincke, J.R., Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance, Phys. Rev. Lett.
89, 053302 (2014).

[5]
Baldwin, C., Brown, P.N., Falgout, R., Graziani, F. and Jones, J., Iterative linear solvers in 2D radiation-hydrodynamics code: Methods and performance, J. Comput. Phys.
154, 1–40 (1999).

[6]
Xiao, Y.X., Shu, S., Zhang, P.W., Mo, Z.Y. and Xu, J., A kind of semi-coarsing AMG method for two dimensional energy equations with three temperatures, J. Numer. Meth. Comput. Appl.
24, 293–303 (2003).

[7]
Mo, Z.Y., Parallel adaptive solution for two dimensional 3-T energy equation on UG, Comput. Visual Sci.
9, 165–174 (2006).

[8]
Jiang, J., Huang, Y., Shu, S. and Zeng, S., Some new discretiztion and adaptation and multigrid methods for 2-D 3-T diffusion equations, J. Comput. Phys.
224, 168–181 (2007).

[9]
Zhou, Z.Y., Xu, X.W., Shu, S., Feng, C.S. and Mo, Z.Y., An adaptive two-level preconditioner for 2-D 3-T radiation diffusion equations, Chin. J. Comput. Phys.
29, 475–483 (2012).

[10]
Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM (2003).

[11]
Hysom, D. and Pothen, A., A scalable parallel algorithm for incomplete factor preconditioning, SIAM J. Sci. Comput.
22, 2194–2215 (2001).

[12]
Brandt, A., Multi-level adaptive solutions to boundary value problems, Math. Comput.
31, 333–390 (1977).

[13]
Ruge, J.W. and K. Stüben, Algebraic multigrid, in multigrid methods, Front. Appl. Math.
3, 73–130 (1987).

[14]
Zhou, J., Hu, X. Z., Zhong, L.Q., Shu, S. and Chen, L., Two-grid methods for Maxwell eigenvalue problems, SIAM J. Numer. Anal.
52, 2027–2047 (2014).

[15]
Xiao, Y., Zhou, Z. and Shu, S., An efficient algebraic multigrid method for quadratic discretizations of linear elasticity problems on some typical anisotropic meshes in three dimensions, Numer. Linear Algebra Appl.
22, 465–482 (2015).

[16]
Hu, Q.Y., Shu, S. and Wang, J.X., Nonoverlapping domain decomposition methods with a simple coarse space for elliptic problems, Math. Comput.
79 (272), 2059–2078 (2010).

[17]
Li, Y.H., Shu, S., Xu, Y.S., and Zou, Q.S., Multilevel preconditioning for the finite volume method, Math. Comput.
81 (279), 1399–1428 (2012).

[18]
Hu, X.Z., Wu, S.H., Wu, X.H., Xu, J., Zhang, C.S., Zhang, S.Q. and Zikatanov, L., Combined pre-conditioning with applications in reservoir simulation, Multiscale Model. Simul.
11, 507–521 (2013).

[19]
Mo, Z.Y., Zhang, A.Q., Cao, X.L., Liu, Q.K., Xu, X.W., An, H.B., Pei, W.B. and Zhu, S.P., JASMIN: A parallel software infrastructure for scientific computing, Front. Comput. Sci.
4, 480–488 (2010).

[20]
Cao, X.L., Mo, Z.Y., Liu, X., Xu, X.W., and Zhang, A.Q., Parallel implementation of fast multipole method based on JASMIN, Sci. China. Inf. Sci.
54, 757–766 (2011).

[21]
Cheng, T.P., Mo, Z.Y. and Shao, J.L., Accelerating groundwater flow simulation in MODFLOW using JASMIN-based parallel computing, Groundwater
52, 194–205 (2014).

[22]
Zhang, A.Q., Mo, Z.Y. and Yang, Z., Three-level hierarchical software architecture for data-driven parallel computing with applications, J. Comput. Res. Dev.
51, 2538–2546 (2014).

[23]
Xu, X.W., Mo, Z.Y., Liu, Q.K. and An, H.B., An implicit time-integration algorithm for diffusion equations with structured AMR and applications, Chin. J. Comput. Phys.
29, 684–692 (2012).

[24]
Shu, S., Yue, X.Q., Zhou, Z.Y. and Xu, X.W., Approximation and two-level algorithm of finite volume schemes for diffusion equations with structured AMR, Chin. J. Comput. Phys.
31, 390–402 (2014).

[25]
Henson, V.E. and Yang, U.M., BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math.
41, 155–177 (2002).

[26]
Berger, M.J. and Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys.
53, 484–512 (1984).

[27]
Berger, M.J. and Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys.
82, 64–84 (1989).

[28]
Gibbs, N.E., Poole, W.G. and Stockmeyer, P. K., An algorithm for reducing the bandwidth and profile of a sparse matrix, SIAM J. Numer. Anal.
13, 236–250 (1976).

[29]
George, A. and Liu, J.W.H., The evolution of the minimum degree ordering algorithm, SIAM Rev.
31, 1–19 (1989).

[30]
George, A., Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal.
10, 345–363 (1973).

[31]
Saad, Y. and Suchomel, B., ARMS: An algebraic recursive multilevel solver for general sparse linear systems, Numer. Linear Algebra Appl.
9, 359–378 (2002).

[32]
Osei-Kuffuor, D., Li, R.P. and Saad, Y., Matrix reordering using multilevel graph coarsening for ILU preconditioning, SIAM J. Sci. Comput.
37, A391–A419 (2015).

[33]
Saad, Y., ILUT: A dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl.
1, 387–402 (1994).