[1]
Davidson, E.R., The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17(1975), pp. 87–94.

[2]
Fang, H.R. and Saad, Y., A filtered Lanczos procedure for extreme and interior eigenvalue problems, SIAM J. Sci. Comput., 34(2012), pp. A2220–A2246.

[3]
Golub, G.H. and Ye, Q., Inexact inverse iteration for generalized eigenvalue problems, BIT, 40(2000), pp. 671–684.

[4]
Jian, S., A block preconditioned steepest descent method for symmetric eigenvalue problems, Appl. Math. Comput., 219(2013), pp. 10198–10217.

[5]
Knyazev, A.V., Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23(2001), pp. 517–541.

[6]
Lai, Y.-L., Lin, K.-Y. and Lin, W.-W., An inexact inverse iteration for large sparse eigenvalue problems, Numer. Linear Algebra Appl., 4(1997), pp. 425–437.

[7]
Morgan, R.B., Generalizations of Davidson's method for computing eigenvalues of large nonsymmetric matrices, J. Comput. Phys., 101(1992), pp. 287–291.

[8]
Morgan, R.B. and Scott, D.S., Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Statisst. Copmut., 7(1986), pp. 817–825.

[9]
Notay, Y., Convergence analysis of inexact Rayleigh quotient iteration, SIAM J. Matrix Anal. Appl., 24(2003), pp. 627–644.

[10]
Ovtchinnikov, E., Cluster robustness of preconditioned gradient subspace iteration eigensolvers, Linear Algebra Appl., 415(2006), pp. 140–166.

[11]
Ovtchinnikov, E.E., Sharp convergence estimates for the preconditioned steepest descent method for Hermitian eigenvalue problems, SIAM J. Numer. Anal., 43(2006), pp. 2668–2689.

[12]
Parlett, B.N., The Symmetric Eigenvalue Problems, SIAM, Philadelphia, PA, 1998.

[13]
Saad, Y., Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Math. Comp., 42(1984), pp. 567–588.

[14]
Saad, Y., Numerical Methods for Large Eigenvalue Problems, Second Edition, SIAM, Philadelphia, PA, 2011.

[15]
Saad, Y., On the rates of convergence of the Lanczos and the Block-Lanczos methods, SIAM J. Numer. Anal., 17(1980), pp. 687–706.

[16]
Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R. and Van Der Vorst, H.A., Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT, 36(1996), pp. 595–633.

[17]
Sleijpen, G.L.G. and Van Der Vorst, H.A., A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl., 17(1996), pp. 401–425.

[18]
Sorensen, D.C., Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13(1992), pp. 357–385.

[19]
Van Den Eshof, J., The convergence of Jacobi-Davidson iterations for Hermitian eigenproblems, Numer. Linear Algebra Appl., 9(2002), pp. 163–179.

[20]
Xue, F. and H.Elman, C., Convergence analysis of iterative solvers in inexact Rayleigh quotient iteration, SIAM J. Matrix Anal. Appl., 31(2009), pp. 877–899.

[21]
Zhou, Y.-K. and Saad, Y., A Chebyshev-Davidson algorithm for large symmetric eigenproblems, SIAM J. Matrix Anal. Appl., 29(2007), pp. 954–971.