Skip to main content Accessibility help

Exponential Additive Runge-Kutta Methods for Semi-Linear Differential Equations

  • Jingjun Zhao (a1), Teng Long (a1) and Yang Xu (a1)


Exponential additive Runge-Kutta methods for solving semi-linear equations are discussed. Related order conditions and stability properties for both explicit and implicit schemes are developed, according to the dimension of the coefficients in the linear terms. Several examples illustrate our theoretical results.


Corresponding author

*Corresponding author. Email addresses: (J. Zhao), (Y. Xu)


Hide All
[1] Araújo, A.L., A note on B-stability of splitting methods, Comput. Vis. Sci. 6, 5357 (2004).
[2] Araújo, A.L., Murua, A. and Sanz-Serna, J.M., Symplectic methods based on decompositions, SIAM J. Numer. Anal. 34, 19261947 (1997).
[3] Ascher, U.M., Ruuth, S.J. and Wetton, B.T.R., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32, 797823 (1995).
[4] Caliari, M. and Ostermann, A., Implementation of exponential Rosenbrock-type integrators, Appl. Numer. Math. 59, 568581 (2009).
[5] Chou, C.S., Zhang, Y.T., Zhao, R. and Nie, Q., Numerical methods for stiff reaction-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B 7, 515525 (2007).
[6] Christlieb, A., Morton, M., Ong, B. and Qiu, J.M., Semi-implicit integral deferred correction constructed with additive Runge-Kutta methods, Commun. Math. Sci. 9, 879902 (2011).
[7] Desoer, C. and Haneda, H., The measure of a matrix as a tool to analyze computer algorithms for circuit analysis, IEEE Trans. Circuit Theory, 19 (1972), pp. 480486.
[8] Dimitriu, G. and Stefănescu, R., Numerical experiments for reaction-diffusion equations using exponential integrators, Margenov, S., Vulkov, L.G. and Waśniewski, J. (Eds.): NAA 2008, LNCS 5434, pp. 249-256 (2009).
[9] Enright, W.H., Hull, T.E. and Lindberg, B., Comparing numerical methods for stiff systems of ODEs, BIT 15, 1048 (1975).
[10] Gondal, M.A., Exponential Rosenbrock integrators for option pricing, J. Comput. Appl. Math. 234, 11531160 (2010).
[11] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin Heidelberg (1981).
[12] Hochbruck, M. and Ostermann, A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43, 10691090 (2005).
[13] Hochbruck, M. and Ostermann, A., Exponential Runge-Kutta methods for parabolic problems, Appl. Numer. Math. 53, 323339 (2005).
[14] Hochbruck, M., Ostermann, A. and Schweitzer, J., Exponential Rosenbrock-type methods, SIAM J. Numer. Anal. 47, 786803 (2009).
[15] Jiang, T. and Zhang, Y.T., Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations, J. Comput. Phys. 253, 368388 (2013).
[16] Kassam, A.K. and Trefethen, L.N., Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26, 12141233 (2005).
[17] Kennedy, C.A. and Carpenter, M.H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math. 44, 139181 (2003).
[18] Maset, S. and Zennaro, M., Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations, Math. Comp. 78, 957967 (2009).
[19] Minchev, B. and Wright, W.M., A Review of Exponential Integrators for First Order Semi-linear Problems, Tech. report 2/05, Department of Mathematical Sciences, Norwegian University of Science and Technology (2005).
[20] Najm, H.N., Wyckoff, P.S. and Knio, O.M., A semi-implicit numerical scheme for reacting flow: I. stiff chemistry, J. Comput. Phys. 143, 381402 (1998).
[21] Ostermann, A. and Thalhammer, M., Positivity of Exponential Multistep Methods, Numerical Mathematics and Advanced Applications, Springer, Berlin, pp. 564571 (2006).
[22] Ostermann, A., Thalhammer, M. and Wright, W.M., A class of explicit exponential general linear methods, BIT 46, 409431 (2006).
[23] Pareschi, L. and Russo, G., Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations, in Recent Trends in Numerical Analysis, Adv. Theory Comput. Math. 3, Nova Sci. Publ., Huntington, New York, pp. 269288 (2001).
[24] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York (1983).
[25] Verwer, J.G., S-stability properties for generalized Runge-Kutta methods, Numer. Math. 27, 359370 (1976).


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed