Skip to main content Accessibility help

Efficient Preconditioner and Iterative Method for Large Complex Symmetric Linear Algebraic Systems

  • Li Dan Liao (a1) and Guo Feng Zhang (a1)


We discuss an efficient preconditioner and iterative numerical method to solve large complex linear algebraic systems of the form (W + iT)u = c, where W and T are symmetric matrices, and at least one of them is nonsingular. When the real part W is dominantly stronger or weaker than the imaginary part T, we propose a block multiplicative (BM) preconditioner or its variant (VBM), respectively. The BM and VBM preconditioned iteration methods are shown to be parameter-free, in terms of eigenvalue distributions of the preconditioned matrix. Furthermore, when the relationship between W and T is obscure, we propose a new preconditioned BM method (PBM) to overcome this difficulty. Both convergent properties of these new iteration methods and spectral properties of the corresponding preconditioned matrices are discussed. The optimal value of iteration parameter for the PBM method is determined. Numerical experiments involving the Helmholtz equation and some other applications show the effectiveness and robustness of the proposed preconditioners and corresponding iterative methods.


Corresponding author

*Corresponding author. Email addresses: (L.D. Liao), (G.F. Zhang)


Hide All
[1] Axelsson, O., Iterative Solution Methods, Cambridge University Press (1994).
[2] Axelsson, O. and Kucherov, A., Real valued iterative methods for solving complex symmetric linear systems, Numer. Linear Algebra Appl. 7, 197218 (2000).
[3] Axelsson, O., Neytcheva, M. and Ahmad, B., A comparison of iterative methods to solve complex valued linear systems, Numer. Algor. 66, 811841 (2014).
[4] Bai, Z.Z., Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput. 75, 791815 (2006).
[5] Bai, Z.Z., Benzi, M. and Chen, F., Modified HSS iteration methods for a class of complex symmetric linear systems, Computing 87, 93111 (2010).
[6] Bai, Z.Z. and Golub, G.H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer Anal. 27, 123 (2007).
[7] Bai, Z.Z., Benzi, M. and Chen, F., On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algor. 56, 297317 (2011).
[8] Bai, Z.Z., Benzi, M. and Chen, F., Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal. 33, 343369 (2013).
[9] Bai, Z.Z., Golub, G.H. and Pan, J.Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math. 98, 132 (2004).
[10] Benzi, M., Golub, G.H. and Liesen, J., Numerical solution of saddle point problems, Acta Numer. 14, 1137 (2005).
[11] Benzi, M. and Bertaccini, D., Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal. 28, 598618 (2008).
[12] Cao, Y. and Ren, Z.R., Two variants of the PMHSS iteration method for a class of complex symmetric indefinite linear systems, Appl. Math. Comput. 264, 6171 (2015).
[13] Betts, J.T., Practical Methods for Optimal Control using Nonlinear Programming, SIAM, Philadelphia (2001).
[14] Dijk, W.V., Toyama, F.M., Accurate numerical solutions of the time-dependent Schrödinger equation, Phys. Rev. 75, 110 (2007).
[15] Day, D. and Heroux, M.A., Solving Complex-Valued Linear Systems via Equivalent Real Formulations, SIAM J. Sci. Comput. 23(2), 480498 (2002).
[16] Feriani, A., Perotti, F. and Simoncini, V., Iterative system solvers for the frequency analysis of linear mechanical systems, Comput. Methods Appl. Mech. Engg. 190, 17191739 (2000).
[17] Freund, R.W., Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices, SIAM J. Sci. Stat. Comput. 13, 425448 (1992).
[18] Freund, R.W., Nachtigal NM QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60, 315339 (1991).
[19] Freund, R.W., A transpose-free quasi-minimum residual algorithm for non-Hermitian linear systems, SIAM. J. Sci. Comput. 14, 470482 (1993).
[20] Frommer, A., Lippert, T., Medeke, B. and Schilling, K., Numerical Challenges in Lattice Quantum Chromodynamics, Springer-Verlag, Berlin, 43(5-6):11051115 (2000).
[21] Hezari, D., Edalatpour, V. and Salkuyeh, D.K., Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations, Numer. Linear Algebra Appl. 22, 761776 (2015).
[22] Lass, O., Vallejos, M., Borzi, A. and Douglas, C.C., Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems, Computing 84, 2748 (2009).
[23] Lang, C. and Ren, Z.R., Rotated block triangular preconditioners for a class of block two-by-two matrices, J. Eng. Math. 93, 8798 (2015).
[24] Liang, Z.Z. and Zhang, G.F., On SSOR iteration method for a class of block two-by-two linear systems, Numer. Algor. 71, 655671 (2016).
[25] Saad, Y. and Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving non-symmetric linear algebraic systems, SIAM J. Sci. Stat. Comput. 7, 856869 (1986).
[26] Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia (2003)
[27] Salkuyeh, D.K., Hezari, D. and Edalatpour, V., Generalized SOR iterative method for a class of complex symmetric linear algebraic system of equations, Int. J. Comput. Math. 92, 802815 (2015).
[28] Sommerfeld, A., Partial Differential Equations, Academic Press. New York (1949).
[29] Xu, W.W., A generalization of preconditioned MHSS iteration method for complex symmetric indefinite linear algebraic systems, Appl. Math. Comput. 219, 1051010517 (2013).
[30] Zhang, G.F. and Zheng, Z., A parameterized splitting iteration method for complex symmetric linear systems, Jpn. J. Ind. Appl. Math. 31, 265278 (2014).


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed