Skip to main content Accessibility help
×
Home

Computable Error Estimates for a Nonsymmetric Eigenvalue Problem

  • Hehu Xie (a1), Manting Xie (a1), Xiaobo Yin (a2) and Meiling Yue (a1)

Abstract

We provide some computable error estimates in solving a nonsymmetric eigenvalue problem by general conforming finite element methods on general meshes. Based on the complementary method, we first give computable error estimates for both the original eigenfunctions and the corresponding adjoint eigenfunctions, and then we introduce a generalised Rayleigh quotient to deduce a computable error estimate for the eigenvalue approximations. Some numerical examples are presented to illustrate our theoretical results.

Copyright

Corresponding author

*Corresponding author. Email addresses: hhxie@lsec.cc.ac.cn (H. Xie), xiemanting@lsec.cc.ac.cn (M. Xie), yinxb@mail.ccnu.edu.cn (X. Yin), yuemeiling@lsec.cc.ac.cn (M. Yue)

References

Hide All
[1] Adams, R. A., Sobolev Spaces, Academic Press, New York (1975).
[2] Ainsworth, M. and Oden, J., A Posteriori Error Estimation in Finite Element Analysis, Wiley & Sons, New York (2000).
[3] Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer, New York (1991).
[4] Babuška, I. and Osborn, J., Eigenvalue Problems, in Handbook of Numerical Analysis Vol. II, Finite Element Methods (Part 1), Lions, P.G. and Ciarlet, P.G. (Eds.), pp. 641787, North-Holland, Amsterdam (1991).
[5] Babuška, I. and Rheinboldt, W., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15, 736754 (1978).
[6] Babuška, I. and Rheinboldt, W., A-posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng. 12, 15971615 (1978).
[7] Brenner, S. and Scott, L., The Mathematical Theory of Finite Element Methods, Springer, New York (1994).
[8] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam (1978).
[9] Cliffe, K. A., Hall, E. J. C. and Houston, P., Adapative discontinuous Galerkin methods for eigen-value problems arising in incompressible fluid flows, SIAM J. Sci. Comput. 31, 46074632 (2010).
[10] Gedicke, J. and Carstensen, C., A posteriori error estimators for non-symmetric eigenvalue problems, Preprint 659, DFG Research Center Matheon, Berlin (2009).
[11] Haslinger, J. and Hlaváček, I., Convergence of a finite element method based on the dual variational formulation, Appl. Math. 21, 4365 (1976).
[12] Heuveline, V. and Rannacher, R., A posteriori error control for finite element approximations of elliptic eigenvalue problems, Adv. Comput. Math. 15, 107138 (2001).
[13] Heuveline, V. and Rannacher, R., Adaptive FEM for eigenvalue problems with application in hydrodynamic stability analysis, in Advances in Numerical Mathematics, Proc. Int. Conf., Sept. 16-17, 2005, Moscow, Moscow: Institute of Numerical Mathematics RAS, 2006.
[14] Lin, Q. and Lin, J., Finite Element Methods: Accuracy and Improvement, Science Press, Beijing (2006).
[15] Neittaanmäki, P. and Repin, S., Reliable Methods for Computer Simulation, Error Control and a Posteriori Estimates, vol. 33 of Studies in Mathematics and Its Applications, Elsevier Science, Amsterdam (2004).
[16] Repin, S., A Posteriori Estimates for Partial Differential Equations, vol. 4 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin (2008).
[17] Vejchodský, T., Complementarity based a posteriori error estimates and their properties, Math. Comput. Simulation 82, 20332046 (2012).
[18] Vejchodský, T., Computing upper bounds on Friedrichs’ constant, in Applications of Mathematics, Brandts, J., Chleboun, J., Korotov, S., Segeth, K., Šístek, J. and Vejchodský, T. (Eds.), pp. 278289, Institute of Mathematics, ASCR, Prague (2012).
[19] Wu, H. and Zhang, Z., Enhancing eigenbalue approximation by gradient recovery on adaptive meshes, IMA J. Numer. Anal. 29, 10081022 (2009).
[20] Xie, H. and Xie, M., Computable error estimates for ground state solution of Bose-Einstein condensates, arXiv:1604.05228, http://arxiv.org/abs/1604.05228 (2016).
[21] Xie, H., Yue, M. and Zhang, N., Fully computable error bounds for eigenvalue problem, arXiv:1601.01561, http://arxiv.org/abs/1601.01561 (2016).
[22] Xie, H. and Zhang, Z., A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods, arXiv:1505.06288, http://arxiv.org/abs/1505.06288 (2015).
[23] Zienkiewicz, O. C. and Zhu, J., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. J. Numer. Methods Eng. 33, 13311364 (1992).

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed