Skip to main content Accessibility help
×
Home

An Unconditionally Energy Stable Immersed Boundary Method with Application to Vesicle Dynamics

  • Wei-Fan Hu (a1) and Ming-Chih Lai (a1)

Abstract

We develop an unconditionally energy stable immersed boundary method, and apply it to simulate 2D vesicle dynamics. We adopt a semi-implicit boundary forcing approach, where the stretching factor used in the forcing term can be computed from the derived evolutional equation. By using the projection method to solve the fluid equations, the pressure is decoupled and we have a symmetric positive definite system that can be solved efficiently. The method can be shown to be unconditionally stable, in the sense that the total energy is decreasing. A resulting modification benefits from this improved numerical stability, as the time step size can be significantly increased (the severe time step restriction in an explicit boundary forcing scheme is avoided). As an application, we use our scheme to simulate vesicle dynamics in Navier-Stokes flow.

Copyright

Corresponding author

Corresponding author. Email Address: weifanhu.am95g@g2.nctu.edu.tw
Corresponding author. Email Address: mclai@math.nctu.edu.tw

References

Hide All
[1]Adams, J., Swarztrauber, P. and Sweet, R., Fishpack – A Package of Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations, (1980).
[2]Beale, J. T., Partially implicit motion of a sharp interface in Navier-Stokes flow, J. Comput. Phys. 231, 61596172 (2012).
[3]Ceniceros, H. D., Fisher, J. E. and Roma, A. M., Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method, J. Comput. Phys. 228, 71377158 (2009).
[4]Ceniceros, H. D. and Fisher, J. E., A fast, robust and non-stiff immersed boundary method, J. Comput. Phys. 230, 51335153 (2011).
[5]Guermond, J. L., Minev, P. and Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195, 60116045 (2006).
[6]Griffith, B. E. and Peskin, C. S., On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208, 75105 (2005).
[7]Griffith, B. E., Hornung, R. D., McQueen, D. M. and Peskin, C. S., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys. 223, 1049 (2007).
[8]Guy, R. D. and Philip, B., A multigrid method for a model of the implicit immersed boundary equations, Commun. Comput. Phys. 12, 378400 (2012).
[9]Harlow, F. H. and Welsh, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids 8, 21812189 (1965).
[10]Hou, T.Y. and Shi, Z., Removing the stiffness of elastic force from the immersed boundary method for the 2D Stokes equations, J. Comput. Phys. 227, 91389169 (2008).
[11]Hou, T. Y. and Shi, Z., An efficient semi-implicit immersed boundary method for the Navier-Stokes equations, J. Comput. Phys. 227, 89688991 (2008).
[12]Hu, W.-F., Kim, Y. and Lai, M.-C., An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows, submitted for publication.
[13]Kim, Y. and Lai, M.-C., Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method, J. Comput. Phys. 229, 48404853 (2010).
[14]Keller, S. R. and Skalak, R., Motion of a tank-treading ellipsoldal particle in a shear flow, J. Fluid Mech. 120, 2747 (1982).
[15]Kantsler, V. and Steinberg, V., Orientation and dynamics of a vesicle in tank-treading motion in shear flow, Phys. Rev. Lett. 95, 258101 (2005).
[16]Kraus, M., Wintz, W., Seifert, U. and Lipowsky, R., Fluid vesicles in shear flow, Phys. Rev. Lett. 77, 36853688 (1996).
[17]Lai, M.-C. and Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys. 160, 705719 (2000).
[18]Lai, M.-C., Tseng, Y.-H. and Huang, H., An immersed boundary method for interfacial flow with insoluble surfactant, J. Comput. Phys. 227, 72797293 (2008).
[19]Lai, M.-C., Hu, W.-F. and Lin, W.-W., A fractional step immersed boundary method for Stokes flow with an inextensible interface enclosing a solid particle, SIAM J. Sci. Comput. 34, B692B710 (2012).
[20]Li, Z. and Lai, M.-C., New finite difference methods based on IIM for inextensible interfaces in incompressible flows, East Asian J. Appl. Math. 1, 155171 (2011).
[21]Mayo, A. A. and Peskin, C. S., An implicit numerical method for fluid dynamics problems with immersed elastic boundaries, Contemp. Math. 141, 261277 (1993).
[22]Mori, Y. and Peskin, C. S., Implicit second-order immersed boundary methods with boundary mass, Comput. Methods Appl. Mech. Engrg. 197, 20492067 (2008).
[23]Newren, E. P., Fogelson, A. L., Guy, R. D. and Kirby, R. M., Unconditionally stable discretizations of the immersed boundary equations, J. Comput. Phys. 222, 702719 (2007).
[24]Newren, E. P., Fogelson, A. L., Guy, R. D. and Kirby, R. M., A comparison of implicit solvers for the immersed boundary equations, Comput. Methods Appl. Mech. Engrg. 197, 22902304 (2008).
[25]Notay, Y., An aggregation-based algebraic multigrid method, Electronic Transactions on Numerical Analysis 37, 123146 (2010).
[26]Peskin, C. S., Flow patterns around heart valves: A numerical method, J. Comput. Phys. 10, 220252 (1972).
[27]Peskin, C. S., The immersed boundary method, Acta Numerica 11, 139 (2002).
[28]Roma, A. M., Peskin, C. S. and Berger, M. J., An adaptive version of the immersed boundary method, J. Comput. Phys. 153, (1999), 509534.
[29]Stockie, J. M. and Wetton, B. R., Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes, J. Comput. Phys. 154, 4164 (1999).
[30]Tu, C. and Peskin, C. S., Stability and instability in the computation of flows with moving immersed boundaries: A comparison of three methods, SIAM J. Sci. Stat. Comput. 13, 13611376 (1992).
[31]Veerapaneni, S. K., Gueyffier, D., Zorin, D. and Biros, G., A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, J. Comput. Phys. 228, 23342353 (2009).
[32]Yang, X., Zhang, X., Li, Z. and He, G.-W., A smoothing technique for discrete delta functions with application to immersed bounary method in moving boundary simulations, J. Comput. Phys. 228, 78217836 (2009).
[33]Zhou, H. and Pozrikidis, C., Deformation of liquid capsules with incompressible interfaces in simple shear flow, J. Fluid Mech. 283, 175200 (1995).

Keywords

An Unconditionally Energy Stable Immersed Boundary Method with Application to Vesicle Dynamics

  • Wei-Fan Hu (a1) and Ming-Chih Lai (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed