Skip to main content Accessibility help

Partially melted granodiorite and related rocks ejected from Crater Lake caldera, Oregon

  • Charles R. Bacon (a1)


Blocks of medium-grained granodiorite to 4 m, and minor diabase, quartz diorite, granite, aplite and granophyre, are common in ejecta of the ∼6,900 yrBP calderaforming eruption of Mount Mazama. The blocks show degrees of melting from 0–50 vol%. Because very few have adhering juvenile magma, it is thought that the blocks are fragments of the Holocene magma chamber's walls. Primary crystallisation of granodiorite produced phenocrystic pl + hyp + aug + mt + il + ap + zc, followed by qz + hb + bt + alkali feldspar (af). Presence of fluid inclusions in all samples implies complete crystallisation before melting. Subsolidus exchange with meteoric hydrothermal fluids before melting is evident in δ18O values of −3·4+4·9‰ for quartz and plagioclase in partially melted granodiorites (fresh lavas from the region have δ18O values of +5·8−+7·0‰); δ18O values of unmelted granodiorites from preclimatic eruptive units suggest hydrothermal exchange began between ∼70 and 24 ka. Before eruption, the granitic rocks equilibrated at temperatures, estimated from Fe-Ti oxide compositions, of up to ∼1000°C for c. 102–104 years at a minimum pressure of 100-180 MPa. Heating caused progressive breakdown or dissolution of hb, af, bt, and qz, so that samples with the highest melt fractions have residual pl + qz and new or re-equilibrated af + hyp + aug + mt + il in high-silica rhyolitic glass (75-77% SiO2). Mineral compositions vary systematically with increasing temperature. Hornblende is absent in rocks with Fe-Ti oxide temperatures >870°C, and bt above 970°C. Oxygen isotope fractionation between qz, pl, and glass in partially fused granodiorite also is consistent with equilibration at T≥900°C (Δ = +0·7 ± 0·5‰). Element partitioning between glass and crystals reflects the large fraction of refractory pl, re-equilibration of af and isolation or incomplete dissolution of accessory phases. Ba and REE contents of analysed glass separates can be successfully modelled by observed degrees of partial melting of granodiorite, but Rb, Sr and Sc concentrations cannot. Several samples have veins of microlite-free glass 1–5 mm thick that are compositionally and physically continuous with intergranular melt and which apparently formed after the climactic eruption began. Whole-rock H2O content, microprobe glass analysis sums near 100% and evidence for high temperature suggest liquids in the hotter samples were nearly anhydrous. The occurrence of similar granodiorite blocks at all azimuths around the 8 × 10 km caldera implies derivation from one pluton. Compositional similarity between granodiorite and pre-Mazama rhyodacites suggests that the pluton may have crystallised as recently as 0·4 Ma; compositional data preclude crystallisation from the Holocene chamber. The history of crystallisation, hydrothermal alteration, and remelting of the granitic rocks may be characteristic of shallow igneous systems in which the balance between hydrothermal cooling and magmatic input changes repeatedly over intervals of 104-106 years.



Hide All
Al-Rawi, Y. & Carmichael, I. S. E. 1967. A note on the natural fusion of granite. AM MINERAL 52, 1086–14.
Allègre, C. J. & Minster, J. F. 1978. Quantitative models of trace element behavior in magmatic processes. EARTH PLANET SCI LETT 38, 125.
Andersen, D. J. & Lindsley, D. H. 1988. Internally consistent solution models for Fe–Mg–Mn–Ti oxides: Fe-Ti oxides. AM MINERAL 73, 714–26.
Aragon, R., McCallister, R. H. & Harrison, H. R. 1984. Cation diffusion in titanomagnetites. CONTRIB MINERAL PETROL 85, 174–85.
Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. TECTONOPHYSICS 44, 173–84.
Bacon, C. R. 1983. Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, U.S.A. J VOLCANOL GEOTHERM RES 18, 57115.
Bacon, C. R. 1990. Calc-alkaline, shoshonitic, and primitive tholeiitic lavas from monogenetic volcanoes near Crater Lake, Oregon. J PETROL 31, 135–66.
Bacon, C. R. & Druitt, T. H. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. CONTRIB MINERAL PETROL 98, 224–56.
Bacon, C. R. & Hirschmann, M. M. 1988. Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. AM MINERAL 73, 5761.
Bacon, C. R. & Lanphere, M. A. 1990. The geologic setting of Crater Lake, Oregon. In Drake, E. T., Larson, G. L., Dymond, J. & Collier, R. (eds.) Crater Lake—An Ecosystem Study. PAC DIV AM ASSOC ADV SCI, SAN FRANCISCO, 1927.
Bacon, C. R., Adami, L. H. & Lanphere, M. A. 1989. Direct evidence for the origin of low-18O silicic magmas: quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon. EARTH PLANET SCI LETT 96, 199208.
Bacon, C. R., Newman, S. & Stolper, S. 1992. Water, CO2, Cl, and F in melt inclusions in phenocrysts from three Holocene explosive eruptions, Crater Lake, Oregon. AM MINERAL (submitted).
Bea, F. 1991. Geochemical modelling of low melt-fraction anatexis in a peraluminous system: The Peña Negra Complex (central Spain). GEOCHIM COSMOCHIM ACTA 55, 1859–74.
Blundy, J. D. & Wood, B. J. 1991. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. GEOCHIM COSMOCHIM ACTA 55, 193209.
Carmichael, I. S. E. 1967. The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. CONTRIB MINERAL PETROL 14, 3664.
Chou, I. M. 1978. Calibration of oxygen buffers at elevated pressure and temperature using the hydrogen fugacity sensor. AM MINERAL 63, 650703.
Crank, J. 1975. The Mathematics of Diffusion. Oxford: Oxford University Press.
Diller, J. S. & Patton, H. B. 1902. The geology and petrography of Crater Lake National Park. US GEOL SURV PROF PAP 3.
Dodge, F. C. W. & Calk, L. C. 1978. Fusion of granodiorite by basalt, central Sierra Nevada. J RES US GEOL SURV 6, 459–65.
Druitt, T. H. & Bacon, C. R. 1986. Lithic Breccia and ignimbrite erupted during the collapse of Crater Lake caldera, Oregon. J VOLCANOL GEOTHERM RES 29, 132.
Druit, T. H. & Bacon, C. R. 1988. Compositional zonation and cumulus processes in the Mount Mazama magma chamber, Crater Lake, Oregon. TRANS R SOC EDINBURGH EARTH SCI 79, 289–97.
Druitt, T. H. & Bacon, C. R. 1989. Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. CONTRIB MINERAL PETROL 101, 245–59.
Elkins, L. T. & Grove, T. L. 1990. Ternary feldspar experiments and thermodynamic models. AM MINERAL 75, 544–59.
Fiske, R. S., Hopson, C. A. & Waters, A. C. 1963. The geology of Mount Rainier National Park, Washington. US GEOL SURV PROF PAP 444.
Grove, T. L., Baker, M. B. & Kinzler, R. J. 1984. Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. GEOCHIM COSMOCHIM ACTA 48, 2113–21.
Grove, T. L., Kinzler, R. J., Baker, M. B., Donnelley-Nolan, J. M. & Lesher, C. E. 1988. Assimilation of granite by basaltic magma at burnt lava flow, Medicine Lake volcano, northern California: decoupling of heat and mass transfer. CONTRIB MINERAL PETROL 99, 320–43.
Halliday, A. N., Davidson, J. P., Hildreth, W. & Holden, p.1991. Modelling the petrogenesis of high Rb/Sr silicic magmas. CHEM GEOL 92, 107–14.
Harrison, T. M. & Watson, E. B. 1983. Kinetics of zircon dissolution and zirconium diffusion in grantic melts of variable water content. CONTRIB MINERAL PETROL 84, 6672.
Harrison, T. M. & Watson, E. B. 1984. The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. GEOCHIM COSMOCHIM ACTA 48, 1467–77.
Hildreth, W., Christiansen, R. L. & O'Neil, J. R. 1984. Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau volcanic flield. J GEOPHYS RES 89, 8339–69.
Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H. & Sisson, V. B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. AM MINERAL 72, 231329.
Huebner, J. S. & Sato, M. 1970. The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers. AM MINERAL 55, 934–52.
Huppert, H. E. & Sparks, R. S. 1988. The fluid dynamics of crustal melting by injection of basaltic sills. TRANS R SOC EDINBURGH EARTH SCI 79, 237–43.
Johannes, W. 1984. Beginning of melting in the granite system Qz—Or—Ab—An—H2O. CONTRIB MINERAL PETROL 86, 264–73.
Johannes, W. 1985. The significance of experimental studies for the formation of migmatites. In Ashworth, J. R. (ed.) Migmatites, 3685. Glasgow: Blackie.
Johannes, W. 1989. Melting of plagioclase-quartz assemblages at 2 kbar water pressure. CONTRIB MINERAL PETROL 103, 270–6.
Johnson, M. C. & Rutherford, M. J. 1989a. Experimentally determined conditions in the Fish Canyon Tuff, Colorado, magma chamber. J PETROL 30, 711–37.
Johnson, M. C. & Rutherford, M. J. 1989b. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. GEOLOGY 17, 837–41.
Jurewicz, S. R. & Watson, E. B. 1985. The distribution of partial melt in a granitic system the application of liquid phase sintering theory. GEOCHIM COSMOCHIM ACTA 49, 1109–21.
Kaczor, S. M., Hanson, G. N. & Peterman, Z. E. 1988. Disequilibrium melting of granite at the contact with a basic plug: a geochemical and petrographic study. J GEOL 96, 6178.
Tourrette, T. Z. La, Burnett, D. S. & Bacon, C. R. 1991. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon. GEOCHIM COSMOCHIM ACTA 55, 457–69.
Leeman, W. P. & Phelps, D. W. 1981. Partitioning of rare earths and other trace elements between sanidine and coexisting volcanic glass. J GEOPHYS RES 86, 10193–9.
Maitre, R. W.Le 1974. Partially fused granite blocks from Mt Elephant, Victoria, Australia. J PETROL 15, 403–12.
Lidstrom, J. W. Jr 1971. A new model for the formation of Crater Lake caldera, Oregon. Ph.D. Dissertation, Oregon State University.
Liu, M. & Yund, R. A. 1992. NaSi-CaAl interdiffusion in plagioclase. AM MINERAL (in press).
Lu, F. & Anderson, A. T. 1991. Mixing origins of volatile and thermal gradients in the Bishop magma. EOS 72, 312.
Maaløe, S. & Wyllie, P. J. 1975. Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions. CONTRIB MINERAL PETROL 52, 175–91.
Maury, R. C. & Bizouard, H. 1974. Melting of acid xenoliths into a basanite: an approach to the possible mechanisms of crustal contamination. CONTRIB MINERAL PETROL 48, 275–86.
McKenzie, D. 1984. The generation and compaction of partially molten rock. J PETROL 25, 713–65.
Miller, C. F., Watson, E. B. & Harrison, T. M. 1988. Perspectives on the source, segregation and transport of granitoid magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 135–56.
Naney, M. T. 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. AM J SCI 283, 9931033.
Nash, W. P. & Crecraft, H. R. 1985. Partition coefficients for trace elements in silicic magmas. GEOCHIM COSMOCHIM ACTA 49, 2309–33.
Nekvasil, H. 1988. Calculated effect of anorthite component on the crystallization paths of H2O-undersaturated haplogranitic melts. AM MINERAL 73, 966–81.
Ritchey, J. L. 1979. Origin of divergent magmas at Crater Lake, Oregon. Ph.D. Dissertation, University of Oregon.
Russell, J. K. & Nicholls, J. 1988. Analysis of petrologic hypotheses with Pearce element ratios. CONTRIB MINERAL PETROL 99, 2535.
Shaw, D. M. 1970. Trace element fractionation during anatexis. GEOCHIM COSMOCHIM ACTA 34, 237–43.
Shaw, H. R. 1972. Viscosities of magmatic silicate liquids: an empirical method of prediction. AM J SCI 272, 870–93.
Sisson, T. W. 1991. Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe. GEOCHIM COSMOCHIM ACTA 55, 1575–85.
Stomer, J. C. Jr 1983. The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. AM MINERAL 68, 586–94.
Taylor, E. M. 1968. Accidental plutonic ejecta at Crater Lake, Oregon. GEOL SOC AM SPEC PAP 115, 221 (abstr).
Tuttle, O. F. & Bowen, N. L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8—KAlSi3O8—SiO2—H2O. GEOL SOC AM MEM 74.
Van der Molen, I. & Paterson, M. S. 1979. Experimental deformation of partially-melted granite. CONTRIB MINERAL PETROL 70, 299318.
Watson, E. B. 1987. Contiguity and the rheology of partially molten granitoids. EOS 68, 1143–4.
Watson, E. B. & Green, T. H. 1981. Apatite/liquid partition coefficients for the rare earth elements and strontium. EARTH PLANET SCI LETT 56, 405–21.
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. EARTH PLANET SCI LETT 64, 295304.
Wickham, S. M. 1987. The segregation and emplacement of granitic magmas. J GEOL SOC LONDON 144, 281–97.
Williams, H. 1942. The geology of Crater Lake National Park, Oregon. CARNEGIE INST WASHINGTON PUBL 540.
Wyllie, P. J. 1977. Crustal anatexis: an experimental review. TECTONOPHYSICS 43, 4171.


Partially melted granodiorite and related rocks ejected from Crater Lake caldera, Oregon

  • Charles R. Bacon (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed