Skip to main content Accessibility help
×
Home

Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas

  • Bernard Barbarin (a1) and Jean Didier (a2)

Abstract

Thermal, mechanical and chemical exchange occurs between felsic and mafic magmas in dynamic magma systems. The occurrence and efficiency of such exchanges are constrained mainly by the intensive parameters, the compositions, and the mass fractions of the coexisting magmas. As these interacting parameters do not change simultaneously during the evolution of the granite systems, the exchanges appear sequentially, and affect magmatic systems at different structural levels, i.e. in magma chambers at depth, in the conduits, or after emplacement. Hybridisation processes are especially effective in the plutonic environment because contrasting magmas can interact over a long time-span before cooling. The different exchanges are complementary and tend to reduce the contrasts between the coexisting magmas. They can be extensive or limited in space and time; they are either combined into mixing processes which produce homogeneous rocks, or only into mingling processes which produce rocks with heterogeneities of various size-scales. Mafic microgranular enclaves represent the most common heterogeneities present in the granite plutons. The composite enclaves and the many types of mafic microgranular enclaves commonly associated in a single pluton, or in polygenic enclave swarms, are produced by the sequential occurrence of various exchanges between coexisting magmas with constantly changing intensive parameters and mass fractions. The complex succession and repetition of exchanges, and the resulting partial chemical and complete isotopic equilibration, mask the original identities of the initial components.

Copyright

References

Hide All
Alibert, C. 1980. Etude expérimental de la diffusion chimique des éléments majeurs entre verres et liquides de composition rhyolitique, basaltique et phonolitique. Unpublished thesis, Université P. et M. Curie, Paris VII, France.
Alibert, C. & Carron, J. P. 1980. Données expérimentales sur la diffusion des éléments majeurs entre verres ou liquides de compositions basaltique, rhyolitique et phonolitique, entre 900°C et 1300°C, à pression ordinaire. EARTH PLANET SCI LETT 47, 294306.
Alibert, C. & Delbove, F. 1980. Données préliminaires sur le rôle de l'eau dans la diffusion chimique entre rhyolite et phonolite fondues à 900°C sous une pression d'eau de 4 kbar. C R ACAD SCI PARIS 291, 789–92.
Allen, C. M. 1991. aLocal equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence. AM MINERAL 76, 574–88
Bacon, C. R. 1986. Magmatic inclusions in silicic and intermediate volcanic rocks. J GEOPHYS RES 91B, 6091–112.
Baker, D. R. 1989. Tracer versus trace element diffusion: diffusional decoupling of Sr concentration from Sr isotope composition. GEOCHIM COSMOCHIM ACTA 53, 3015–23.
Baker, D. R. 1990. Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 Kbar, application of transition state theory, and diffusion in zoned magma chambers. CONTRIB MINERAL PETROL 104, 407–23.
Barbarin, B. 1988. Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint Julien-la-Vêtre Monzogranite (Nord Forez, Massif Central, France). CAN J EARTH SCI 25, 4959.
Barbarin, B. 1989. Importance des différents processus d'hybridation dans les plutons granitiques du batholite de la Sierra Nevada, Californie. SCHWEIZ MINERAL PETROGR MITT 69, 303–15.
Barbarin, B. 1990. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada Batholith, California. J GEOPHYS RES 95, 17747–56.
Barbarin, B. 1991a. Contrasted origins for the “polygenic” and “monogenic” enclave swarms in some granitoids of the Sierra Nevada batholith, California. TERRA ABSTR 2, 32.
Barbarin, B. 1991b. Enclaves of the Mesozoic calc-alkaline granitoids of the Sierra Nevada batholith, California. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 135–53. Amsterdam: Elsevier.
Barbarin, B., Dodge, F. C. W. & Kistler, R. W. 1985. REE contents and Rb-Sr systematics of mafic enclaves and other associated mafic rocks, central Sierra Nevada, California. EOS 66, 1150.
Barbarin, B., Dodge, F. C. W., Kistler, R. W. & Bateman, P. C. 1989. Mafic inclusions and associated aggregates and dikes in granitoid rocks, central Sierra Nevada batholith. Analytic data. U S GEOL SURV BULL 1899, 128.
Barbarin, B. & Didier, J. 1991. Review of the main hypotheses proposed for the genesis and evolution of mafic microgranular enclaves. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 367–73. Amsterdam: Elsevier.
Barnes, C. G. 1983. Petrology and upward zonation of the Wooley Creek Batholith, Klamath Mountains, California. J PETROL 24, 495537.
Bateman, P. C. & Chappell, B. W. 1979. Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. GEOL SOC AM BULL 90, 465–82.
Bébien, J., Gagny, C. & Tanani, S.Soussi 1987. Les associations de magmas acides et basiques: des objets fractals? C R ACAD SCI PARIS 305, 277–80.
Belin, J. M. 1988. Evolution des enclaves basiques et de leur matrice dans un granite. L'exemple du granite porphyroïde de Saint-Gervais d'Auvergne (Massif Central français). C R ACAD SCI PARIS 307, 387–93.
Blake, S. & Campbell, I. H. 1986. The dynamics of magma-mixing during flow in volcanic conduits. CONTRIB MINERAL PETROL 94, 7281.
Blake, S. & Koyaguchi, T. 1991. Insights on the magma mixing model from volcanic rocks. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 403–13. Amsterdam: Elsevier.
Bowen, N. L. 1922. The behavior of inclusions in igneous magmas. J PETROL 30, 513–70.
Briot, D. 1990. Magma mixing versus xenocryst assimilation: The genesis of trachyandesites in Sancy volcano, Massif Central, France. LITHOS 25, 227–41.
Bussy, F. 1990. Pétrogenèse des enclaves microgrenues associées aux granitoïdes calcoalcalins: exemple des massifs varisque du Mont-Blanc (Alpes occidentales) et miocène du Monte Capanne (Ile d'Elbe, Italie). MÉM GÉOL 7, Université de Lausanne.
Campbell, I. H. & Turner, J. S. 1985. Turbulent mixing between fluids with different viscosities. NATURE 313, 3942.
Campbell, I. H. & Turner, J. S. 1986. The influence of viscosity on fountains in magma chambers. J PETROL 27, 130.
Campbell, I. H. & Turner, J. S. 1989. Fountain in magma chambers. J PETROL 30, 885923.
Cantagrel, J. M., Didier, J. & Gourgaud, A. 1984. Magma mixing: origin of intermediate rocks and “enclaves” from volcanism to plutonism. PHYS EARTH PLANET SCI 35, 6376.
Chappell, B. W., White, A. J. R. & Wyborn, D. 1987. The importance of residual source material (restite) in granite petrogenesis. J PETROL 28, 1111–38.
Chappell, B. W. & White, A. J. R. 1991. Restite enclaves and the restite model. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 375–81. Amsterdam: Elsevier.
Cobbing, E. J. & Pitcher, W. S. 1972. The Coastal Batholith of Central Peru. J GEOL SOC LONDON 128, 421–60.
Cocirta, C. & Orsini, J. B. 1986. Signification de la diversité de composition des enclaves “microgrenues” sombres en contexte plutonique. L'exemple des plutons calcocalcalins de Bono et Buddusò (Sardaigne septentrionale). C R ACAD SCI PARIS 302, 331–6.
Cramer, J. J. & Kwak, T. A. P. 1988. A geochemical study of zoned inclusions in granitic rocks. AM J SCI 288, 827–71.
Debon, F. 1975. Les massifs granitoïdes a structure concentrique de Cauterets-Panticosa (Pyrénées occidentales) et leurs enclaves. Une étude pétrographique et géochimique. MEM SCI TERRE 33.
Debon, F. 1991. Comparative major element chemistry in various “microgranular enclave-plutonic host” pairs. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 293312. Amsterdam: Elsevier.
DePaolo, D. J. 1981. A neodymium and strontium isotopic study of the Mesozoic calcalkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J GEOPHYS RES 86, 10470–88.
Didier, D. J. 1973. Granites and their enclaves. The bearing of enclaves on the origin of granites. DEV PETROL 3 Amsterdam: Elsevier.
Didier, J. 1987. Contribution of enclave studies to the understanding of origin and evolution of granitic magmas. GEOL RUNDSCHAU 76, 4150.
Didier, J. & Barbarin, B. (eds.) 1991. Enclaves and granite petrology. DEV PETROL 13. Amsterdam: Elsevier.
Didier, J. & Lameyre, J. 1969. Les granites du Massif Central français: étude comparée des leucogranites et granodiorites. CONTRIB MINERAL PETROL 24, 219–38.
Dodge, F. C. W. & Kistler, R. W. 1990. Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. J GEOPHYS RES 95, 17841–8.
Dorais, M. J., Whitney, J. A. & Roden, M. F. 1990. Origin of mafic enclaves in the Dinkey Creek pluton, central Sierra Nevada Batholith, California. J PETROL 31, 853–81.
Fernandez, A. N. & Barbarin, B. 1991. Relative rheology of coexisting mafic and felsic magmas: Nature of resulting interaction processes. Shape and mineral fabrics of mafic microgranular enclaves. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 263–75. Amsterdam: Elsevier.
Fershtater, G. B. & Borodina, N. S. 1977. Petrology of autoliths in granitic rocks. INT GEOL REV 19, 458–68.
Fershtater, G. B. & Borodina, N. S. 1991. Enclaves in the Hercynian granitoids of the Ural Mountains U.S.S.R.. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 8394. Amsterdam: Elsevier.
Fourcade, S. & Javoy, M. 1991. Sr-Nd-O isotopic features of mafic microgranular enclaves and host granitoids from the Pyrenees, France: Evidence for their hybrid nature and inference on their origin. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 345–64. Amsterdam: Elsevier.
Furman, T. & Spera, F. J. 1985. Co-mingling of acid and basic magma with implications for the origin of mafic I-type xenoliths: field and petrochemical relations of an usual dike complex at Eagle Peak Lake, Sequoia National Park, California U.S.A. J VOLCANOL GEOTHERM RES 24, 151–78.
Gamble, J. A. 1979. Some relationships between coexisting granitic and basaltic magmas and the genesis of hybrid rocks in the Tertiary central complex of Slieve Gullion, northeast Ireland. J VOLCANOL GEOTHERM RES 5, 297316.
Gourgaud, A., Cantagrel, J. M. & Vincent, P. M. 1981. Mélange de magmas et pétrogenèse des trachyandésites du Mont-Dore (Massif Central français). C R AC AD SCI PARIS 293, 711–6.
Hibbard, M. J. & Watters, R. J. 1985. Fracturing and diking in incompletely crystallized granitic plutons. LITHOS 18, 112.
Hofmann, A. W. 1980. Diffusion in natural silicate melts: a critical review. In Hargraves, R. B. (ed.) Physics of magmatic processes, 385417. Princeton, New Jersey: Princeton University Press.
Holden, P., Halliday, A. N. & Stephens, W. E. 1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input into granitoid production. NATURE 330, 53–6.
Huppert, H. E., Sparks, R. S. J. & Turner, J. S. 1984. Some effects of viscosity on the dynamics of replenished magma chamber. J GEOPHYS RES 89, 6857–77.
Huppert, H. E. & Sparks, R. S. J. 1988. The generation of granitic magmas by intrusion of basalt into the crust. J PETROL 29, 599624.
Johnston, A. D. & Wyllie, P. J. 1988. Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. CONTRIB MINERAL PETROL 98, 352–62.
Kouchi, A. & Sunagawa, I. 1983. Mixing basaltic and dacitic magmas by forced convection. NATURE 304, 527–8.
Kouchi, A. & Sunagawa, I. 1985. A model for mixing basaltic and dacitic magmas as deduced from experimental data. CONTRIB MINERAL PETROL 89, 1723.
Koyaguchi, T. 1985. Magma mixing in a conduit. J VOLCANOL GEOTHERM RES 25, 365–9.
Koyaguchi, T. 1986. Evidence for two-stage mixing in magmatic inclusions and rhyolitic lava domes on Niijima Island, Japan. J VOLCANOL GEOTHERM RES 29, 7198.
Koyaguchi, T. 1987. Magma mixing in a squeezed conduit. EARTH PLANET SCI LETT 84, 339–44.
Koyaguchi, T. & Blake, S. 1991. Origin of mafic enclaves: Constraints on the magma mixing model from fluid dynamic experiments. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 415429. Amsterdam: Elsevier.
Kumar, S. C. 1988. Microgranular enclaves in granitoids: agents of magma mixing. J SOUTHEAST ASIAN EARTH SCI 2, 109–21.
Lesher, C. E. 1990. Decoupling of chemical and isotopic exchange during magma mixing. NATURE 344, 235–7.
Oldenburg, C. L. M., Spera, F. J., Yuen, D. A. & Sewell, L. G. 1989. Dynamic mixing in magma bodies: theory, simulations and implications. J GEOPHYS RES 94, 9215–36.
Pabst, A. 1928. Observations on inclusions in the granitic rocks of the Sierra Nevada. UNIV CALIFORNIA PUB DEPT GEOL SCI 17, 325–86.
Pin, C. 1991. Sr-Nd isotopic study of igneous and metasedimentary enclaves in some Hercynian granitoids from the Massif Central, France. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 333–43. Amsterdam: Elsevier.
Pin, C., Binon, M., Belin, J. M., Barbarin, B. & Clemens, J. D. 1990. Origin of microgranular enclaves in granitoids: equivocal Sr-Nd evidence from Hercynian rocks in the Massif Central (France). J GEOPHYS RES 95, 17821–8.
Pitcher, W. S. 1991. Synplutonic dykes and mafic enclaves. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 383–91. Amsterdam: Elsevier.
Roddick, J. A. & Armstrong, J. E. 1959. Relict dikes in the Coast Mountains near Vancouver B. C., J GEOL 67, 603–13.
Shaw, H. R., Smith, R. L & Hildreth, W. 1976. Thermogravitational mechanisms for chemical variations in zoned magma chambers. GEOL SOC AM ABSTR PROG 8, 1102.
Sparks, R. S. J., Sigurdsson, H. & Wilson, L. 1977. Magma mixing: a mechanism for triggering acid explosive eruptions. NATURE 267, 315–8.
Sparks, R. S. J. & Marshall, L. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. J VOLCANOL GEOTHERM RES 29, 99124.
Watson, E. B. 1981. Diffusion in magmas at depth in the Earth: the effects of pressure and dissolved H2O. EARTH PLANET SCI LETT 52, 291301.
Watson, E. B. 1982. Basalt contamination by continental crust: some experiments and models. CONTRIB MINERAL PETROL 80, 7387.
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.
Wiebe, R. A. 1973. Relations between coexisting basaltic and granitic magmas in a composite dike. AM J SCI 273, 130–51.
Wiebe, R. A. 1980. Commingling of contrasted magmas in the plutonic environment: examples from the Nain anorthositic complex. J GEOL 88, 197209.
Wiebe, R. A. 1991. Commingling of contrasted magmas and generation of mafic enclaves in granitic rocks. In Didier, J. & Barbarin, B. (eds) Enclaves and granite petrology, DEV PETROL 13, 393402. Amsterdam: Elsevier.
Yoder, H. S. Jr 1973. Contemporaneous basaltic and rhyolitic magmas. AM MINERAL 58, 153–71.

Keywords

Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas

  • Bernard Barbarin (a1) and Jean Didier (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed