Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T00:38:09.633Z Has data issue: false hasContentIssue false

Crystallisation of fine- and coarse-grained A-type granite sheets of the Southern Oklahoma Aulacogen, U.S.A.

Published online by Cambridge University Press:  03 November 2011

John P. Hogan
Affiliation:
Department of Geology and Geophysics, University of Missouri-Rolla, Rolla, Missouri 65409U.S.A.; e-mail: jhogan@umr.edu
M. Charles Gilbert
Affiliation:
School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma 73019, USA
Jon D. Price
Affiliation:
Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

Abstract

A-type felsic magmatism associated with the Cambrian Southern Oklahoma Aulacogen began with eruption of voluminous rhyolite to form a thick volcanic carapace on top of an eroded layered mafic complex. This angular unconformity became a crustal magma trap and was the locus for emplacement of later subvolcanic plutons. Rising felsic magma batches ponding along this crustal magma trap crystallised first as fine-grained granite sheets and then subsequently as coarser-grained granite sheets. Aplite dykes, pegmatite dykes and porphyries are common within the younger coarser-grained granite sheets but rare to absent within the older fine-grained granite sheets. The older fine-grained granite sheets typically contain abundant granophyre.

The differences between fine-grained and coarse-grained granite sheets can largely be attributed to a progressive increase in the depth of the crustal magma trap as the aulacogen evolved. At low pressures (<200MPa) a small increase in the depth of emplacement results in a dramatic increase in the solubility of H2O in felsic magmas. This is a direct consequence of the shape of the H2O-saturated granite solidus. The effect of this slight increase in total pressure on the crystallisation of felsic magmas is to delay vapour saturation, increase the H2O content of the residual melt fractions and further depress the solidus temperature. Higher melt H2O contents, and an extended temperature range over which crystallisation can proceed, both favour crystallisation of coarser-grained granites. In addition, the potential for the development of late, H2O-rich, melt fractions is significantly enhanced. Upon reaching vapour saturation, these late melt fractions are likely to form porphyries, aplite dykes and pegmatite dykes.

For the Southern Oklahoma Aulacogen, the progressive increase in the depth of the crustal magma trap at the base of the volcanic pile appears to reflect thickening of the volcanic pile during rifting, but may also reflect emplacement of earlier granite sheets. Thus, the change in textural characteristics of granite sheets of the Wichita Granite Group may hold considerable promise as an avenue for further investigation in interpreting the history of this rifting event.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L. 1983. Proterozoic anorogenic granite plutonism of North America. Geological Society of America Memoir 161, 133–54.10.1130/MEM161-p133Google Scholar
Bowring, S. A.&Hoppe, W. J. 1982. U-Pb Ages from the Mount Sheridan gabbro, Wichita Mountains. In Gilbert, M. C.&Donovan, R. N. (eds) Geology of the eastern Wichita Mountains, southwestern Oklahoma, Oklahoma Geological Survey Guidebook 21. 54–9. Norman, Oklahoma: The University of Oklahoma Printing Services.Google Scholar
Burke, W. H., Otto, J. B.&Denison, R. E. 1969. Potassium-argon datating of basaltic rocks. Journal of Geophysical Research 74, 1082–6.10.1029/JB074i004p01082Google Scholar
Burnham, C. W. 1979. Magmas and hydrothermal fluids. In Barnes, H. L. (ed) Geochemistry of Hydrothermal Ore Deposits, New York: John Wiley. 71133.Google Scholar
Burnham, C. W.&Ohmoto, H. 1980. Late-stage processes of felsic magmatism. Mining Geology, Special Issue 8, 111.Google Scholar
Cameron, M., Weaver, B. L.&Diez, de Medina D. 1986. A preliminary report on the trace element geochemistry of mafic igneous rocks of the southern Oklahoma Aulacogen. In Gilbert, M. C. (ed.) Petrology of the Cambrian Wichita Mountains Igneous Suite, Oklahoma Geological Survey Guidebook 23, 80–5.Google Scholar
Cann, J. R. 1970. Upward movement of granitic magma. Geological Magazine 107, 335–40.10.1017/S0016756800056193Google Scholar
Clarke, D. B.&Clarke, G. K. C. 1998. Layered granodiorites at Chcbucto Head, South Mountain batholith. Nova Scotia. Journal of Structural Geology 20, 1305–24.10.1016/S0191-8141(98)00067-4Google Scholar
Coffman, J. D., Gilbert, M. C.&McConnell, D. A. 1986. An interpretation of the crustal structure of the Southern Oklahoma Aulacogen satisfying gravity data. In Gilbert, M. C. (ed.) Petrology of the Cambrian Wichita Mountains Igneous Suite, Oklahoma Geological Survey Guidebook 23, 110. Norman, Oklahoma: The University of Oklahoma Printing Services.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R.&Chappell, B. W. 1982. Nature and origin of A-typc granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.10.1007/BF00374895Google Scholar
Cooper, R. W. 1991. Geology, geochemistry, and Platinum-Group-Element mineralization of the Cambrian Glen Mountains Layered Complex and associated rocks, southwestern Oklahoma. Oklahoma Geological Survey Circular 92, 98108.Google Scholar
Denison, R. E. 1995. Significance of air-photograph linears in the basement rocks of the Arbuckle Mountains. Oklahoma Geologic Survey Circular, 97, 119–31.Google Scholar
Dowty, E. 1980. Crystal growth and nucleation theory and the numerical simulation of igneous crystallisation. In Hargraves, R. B. (ed.) Physics of Magmatic Processes 419–85. Princeton N.J.: Princeton University Press.10.1515/9781400854493.419Google Scholar
Eby, G. N. 1990. The A-type Granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115–34.10.1016/0024-4937(90)90043-ZGoogle Scholar
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: Petrogentic and tectonic implications. Geology 20, 641–4.10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;22.3.CO;2>Google Scholar
Emslie, R. F.&Hunt, P. A. 1990. Ages and petrogentic significance of igneous mangerite-charnockite suites associated with massif anorthosites, Grenville Province. Journal of Geology 98, 213–31.10.1086/629394Google Scholar
Fenn, P. M. 1977. The nucleation and growth of alkali feldspars from hydrous melts. Canadian Mineralogist 15, 135–61.Google Scholar
Fenn, P. M. 1986. On the origin of graphic granite. American Mineralogist 71, 325–30.Google Scholar
Frost, C. D., Frost, B. R., Chamberlain, K. R.&Edwards, B. R. 1999. Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming. USA: A Reduced Rapakivi-type Anorogenic Granite. Journal of Petrology 40, 1771–802.10.1093/petroj/40.12.1771Google Scholar
Frost, C. D.&Frost, B. R. 1997. Reduced rapakivi granites: the tholeiite connection. Geology 25, 647–50.10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;22.3.CO;2>Google Scholar
Gilbert, M. C. 1983. Timing and chemistry of igneous events associated with the Southern Oklahoma Aulacogen. Tectonophysics, 94, 439–55.10.1016/0040-1951(83)90028-8Google Scholar
Gilbert, M. C. 1992. Speculations on the origin of the Anadarko Basin. In Mason, R. (ed.) Proceedings of the 7th International Conference on Basement Tectonics, Kingston, Ontario, 195208. Dordrecht: Kluwer Academic.Google Scholar
Gilbert, M. C., Myers, J. D.&Hogan, J. P. 1990. Geology, geochemistry, and structure of low-pressure sheet granites, Wichita Mountains Oklahoma. In Guidebook for Fieldtrip #5. Geological Society of America Annual Meeting. Dallas Geological Society.Google Scholar
Gilbert, M. C.&Hughes, S. S. 1986. Partial chemical characterization of Cambrian basaltic liquids of the Southern Oklahoma Aulacogen. In Gilbert, M. C. (ed.) Petrology of the Cambrian Wichita Mountains Igneous Suite, Oklahoma Geological Survey Guidebook 23, 73–9. Norman, Oklahoma: The University of Oklahoma Printing Services.Google Scholar
Gilbert, M. C.&Myers, J. D. 1986. Overview of the Wichita Granite Group. In Gilbert, M.C. (ed.) Petrology of the Cambrian Wichita Mountains Igneous Suite, Oklahoma Geological Survey Guidebook 23, 107–16. Norman, Oklahoma: The University of Oklahoma Printing Services.Google Scholar
Ham, W. E., Denison, R. E.&Merritt, C. A. 1964. Basement rocks and structural evolution of southern Oklahoma. Oklahoma Geological Survey Bulletin 95.Google Scholar
Hames, W. E., Hogan, J. P.&Gilbert, M. C. 1995. Revised granitegabbro age relationships. Southern Oklahoma Aulacogen. In Hogan, John P.&Gilbert, M. C. (eds) Basement Tectonics: Central North America and Other Regions 12, 247–9. Dordrecht: Kluwer Academic.Google Scholar
Hibbard, M. J.&Watters, R. 1985. Fracturing and diking in incompletely crystallized granitic plutons. Lithos 18, 112.10.1016/0024-4937(85)90002-7Google Scholar
Hoffman, P., Dewey, J. F.&Burke, K. 1974. Aulacogens and their genetic relationship to geosynclines, with a Proterozoic example from the Great Slave Lake, Canada. In Dott, R. J. Jr.&Shaver, R. H. (eds) Modern and ancient geosynclinal sedimentation, Society of Economic Paleontologists and Economic Mineralogists Special Publication 19, 3855.10.2110/pec.74.19.0038Google Scholar
Hogan, J. P., Gilbert, M. C., Weaver, B. L.&Myers, J. D. 1992. High-level A-typc sheet granites of the Wichita Mountains Igneous Province, Oklahoma U.S.A. In Brown, P. E.&Chappell, B. W. (eds) Second Hutton Symposium on the Origin of Granites and Related Rocks. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 491–2.Google Scholar
Hogan, J. P., Gilbert, M. C., Price, J. D.&Wright, J. E. 1995. Petrogenesis of A-type sheet granites from an ancient rift. In Brown, M.&Piccoli, P. M. (eds) The origin of Granites and Related Rocks, Third Hutton Symposium Abstracts: U.S. Geological Survey Circular 1129, 68–9. Reston, Virginia: US Geological Survey.Google Scholar
Hogan, J. P., Gilbert, M. C., Price, J. D., Wright, J. E., Degller, M.&Hames, W. E. 1996. Magmatic evolution of the Southern Oklahoma Aulacogen. Geological Society of America Abstracts with Programs 28(1), 19.Google Scholar
Hogan, J. P., Gilbert, M. C.&Price, J. D. 1998. Magma traps and driving pressure: consequences for pluton shape and emplacement in an extensional regime. Journal of Structural Geology 20, 1155–68.10.1016/S0191-8141(98)00063-7Google Scholar
Hogan, J. P.&Dewers, T. 1998. Crystallization of orbicular granite. EOS: Transactions of the American Geophysical Union 79. S361.Google Scholar
Hogan, J. P.&Gilbert, M.C. 1991. Contrasting crystallization styles of sheet granites from the Wichita magmatic province: Implications for source region heterogeneity. Geological Society of America, Abstracts with Programs 23, 33.Google Scholar
Hogan, J. P.&Gilbert, M. C. 1995. The A-type Mount Scott Granite sheet: Importance of crustal magma traps. Journal of Geophysical Research 100, B8, 15, 779–92.10.1029/94JB03258Google Scholar
Hogan, J. P.&Gilbert, M. C. 1997. Intrusive style of A-type sheet granites in a rift environment: The Southern Oklahoma Aulacogen. In Ojakangas, R. W., Dickas, A. B.&Green, J. C. (eds) Middle Proterozoic to Cambrian Rifting, Central North America, Geological Society of America Special Paper 312–19, 299311.Google Scholar
Hogan, J. P.&Gilbert, M. C. 1998. The Southern Oklahoma Aulacogen: A Cambrian analog for a Mid-Proterozoic AMCG (Anorthositc-Mangerite-Charnockite-Granite) complexes. In Hogan, John P.&Gilbert, M. C. (eds) Basement Tectonics: Central North America and Other Regions 12, 3978. Dordrecht: Kluwer Academic.10.1007/978-94-011-5098-9_3Google Scholar
Holtz, F., Pichavant, M., Barbey, P.&Johannes, W. 1992. Effect of H2O on liquidus phase relationships in the haplogranite system at 2 and 5 kbar. American Mineralogist 11, 1123–41.Google Scholar
Johannes, W.&Holtz, F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer.10.1007/978-3-642-61049-3Google Scholar
Johnson, M. C.&Rutherford, M. J. 1989. Experimental calibration of the Al-in-hornblende geobarometer, with application to the Long Valley caldera (California) volcanic rocks. Geology 17, 837–41.10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;22.3.CO;2>Google Scholar
Keller, G. R.&Baldridge, W. S. 1995. The Southern Oklahoma Aulacogen. In Olsen, K.H. (ed.) Continental Rifts: Evolution, Structure, Tectonics. Developments in Geotectonics 25, 427–36.Google Scholar
King, P. L., White, A. J. R., Chappell, B. W.&Allen, C. M. 1997. Characterization and origin of aluminous A-typc Granites from the Lachlan Fold Belt, southeastern Australia. Journal of Petrology 38, 371–91.10.1093/petroj/38.3.371Google Scholar
Kleeman, G. J.&Twist, D. 1989. The compositionally-zoned sheet-like granite pluton of the Bushveld Complex: Evidence bearing on the nature of A-type magmatism. Journal of Petrology 30, 1383–414.10.1093/petrology/30.6.1383Google Scholar
Lambert, D. D., Unruh, D. M.&Gilbert, M. C. 1988. Rb-Sr and Sm-Nd isotopic study of the Glen Mountains Layered Complex: Initiation of rifting within the Southern Oklahoma Aulacogen. Geology 16, 1317.10.1130/0091-7613(1988)016<0013:RSASNI>2.3.CO;22.3.CO;2>Google Scholar
McConnell, D. A.&Gilbert, M. C. 1990. Cambrian extensional tectonics and magmatism within the Southern Oklahoma Aulacogen. Tectonophysics 174, 147–57.10.1016/0040-1951(90)90388-OGoogle Scholar
Merritt, C. A. 1958, Igneous geology of the Lake Altus area, Oklahoma. Oklahoma Geological Survey Bulletin 76.Google Scholar
Merritt, C. A. 1965. Mt. Scott Granite, Wichita Mountains, Oklahoma. Oklahoma Geology Notes 25, 263–72.Google Scholar
Merritt, C. A. 1966. Rim albite in coarse-grained Quanah Granite, Wichita Mountains, Oklahoma. Oklahoma Geology Notes 26, 211–13.Google Scholar
Merritt, C. A. 1967. Names and relative ages of granites and rhyolites in the Wichita Mountains, Oklahoma. Oklahoma Geology Notes 27, 4553.Google Scholar
Myers, J. D., Gilbert, M. C.&Loiselle, M. C. 1981. Geochemistry of the Cambrian Wichita Granite Group and revisions of its lithostratigraphy. Oklahoma Geology Notes 41, 172–5.Google Scholar
Nekvasil, H. 1991. Ascent of felsic magmas and formation of rapakivi. American Mineralogist 76, 1279–90.Google Scholar
Perry, W. J. Jr 1989. Tectonic evolution of the Anadarko Basin Region, Oklahoma. United States Geological Survey Bulletin 1866A.Google Scholar
Powell, B. N., Gilbert, M. C.&Fischer, J. F. 1980a. Lithostratigraphic classification of basement rocks of the Wichita Province, Oklahoma: Summary. Geological Society of America Bulletin Part 1 91, 509–14.10.1130/0016-7606(1980)91<509:LCOBRO>2.0.CO;22.0.CO;2>Google Scholar
Powell, B. N., Gilbert, M. C.&Fischer, J. F. 1980b. Lithostratigraphic classification of basement rocks of the Wichita Province, Oklahoma. Geological Society of America Bulletin Part II 91, 1875–94.10.1130/GSAB-P2-91-1875Google Scholar
Powell, B. N.&Phelps, D. W. 1977. Igneous cumulates of the Wichita province and their tectonic implication. Geology 5, 52–6.10.1130/0091-7613(1977)5<52:ICOTWP>2.0.CO;22.0.CO;2>Google Scholar
Pratt, T. L., Hauser, E. C.&Nelson, K. D. 1992. Widespread buried Precambrian layered sequences in the U.S. Mid-continent: Evidence for large Proterozoic depositional basins. Bulletin of the American Association of Petroleum Geologists 76, 1384–401.Google Scholar
Price, J. D. 1998. Petrology of the Mount Scott Granite (Ph.D. Thesis, University of Oklahoma, Norman).Google Scholar
Price, J. D., Hogan, J. P.&Gilbert, M. C. 1996. Rapakivi texture in the Mount Scott Granite, Wichita Mountains, Oklahoma. European Journal of Mineralogy 8, 435–51.10.1127/ejm/8/2/0435Google Scholar
Price, J. D., Hogan, J. P.&Gilbert, M. C. 1998. Surface and nearsurface investigation of the alteration of the Mount Scott Granite and geometry of the Sandy Creek pluton, Hale Spring area, Wichita Mountains, Oklahoma. In Hogan, John P.&Gilbert, M. C. (eds) Basement Tectonics: Central North America and Other Regions 12, 79122. Dordrecht: Kluwer Academic.10.1007/978-94-011-5098-9_4Google Scholar
Price, J. D., Hogan, J. P., Gilbert, M. C., London, D.&Morgan, G. B. IV 1999. Experimental study of titanite-fluorite equilibria in the A-type Mount Scott Granite: Implications for assessing F contents of felsic magma. Geology 27, 951–4.10.1130/0091-7613(1999)027<0951:ESOTFE>2.3.CO;22.3.CO;2>Google Scholar
Swanson, S. E. 1977. Relation of nucleation and crystal growth rate to the development of granitic textures. American Mineralogist 62, 966–78.Google Scholar
Taylor, C. H. 1915. Granites of Oklahoma. Oklahoma Geological Survey Bulletin 20.Google Scholar
Tilton, G. R., Wetherill, G. W.&Davis, G. L. 1962. Mineral ages from the Wichita and Arbuckle Mountains, Oklahoma, and the St. Francois Mountains, Missouri. Journal of Geophysical Research, 67, 4011–19.10.1029/JZ067i010p04011Google Scholar
Tuttle, O. F.&Bowen, N. L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAl Si3O8-SiO2-H2O. The Geological Society of America Memoir 74.10.1130/MEM74-p1Google Scholar
Vernon, R. H. 1985. Possible role of superheated magma in the formation of orbicular granitoids. Geology 13, 843–5.10.1130/0091-7613(1985)13<843:PROSMI>2.0.CO;22.0.CO;2>Google Scholar
Weaver, B. L.&Gilbert, M. C. 1986. In Gilbert, M. C. (cd.) Petrology of the Cambrian Wichita Mountains Igneous Suite, Oklahoma Geological Survey Guidebook 23, 117–25. Norman, Oklahoma: The University of Oklahoma Printing Services.Google Scholar
Whalen, J. B., Currie, K. L.&Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and pctrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.10.1007/BF00402202Google Scholar
Wright, J. E., Hogan, J. P.&Gilbert, M. C. 1996. The Southern Oklahoma Aulacogen: Not just another B.L.I.P. EOS: Transactions of the American Geophysical Union 77, 46, F845.Google Scholar