Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Futuristic First Responders
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Futuristic First Responders
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Futuristic First Responders
        Available formats
        ×
Export citation

The ultimate sacrifice of 104 firefighters at the August 12, 2015, Tianjin explosions and the 10th anniversary of Hurricane Katrina call for the development of rescue robots as first responders. 1 , 2 Robots can be designed to combat fires, contain chemicals, rescue citizens, and perform other dangerous tasks. During disasters, the appropriate use of rescue robots could save lives.

The Defense Advanced Research Projects Agency (DARPA) Robotics Challenge (DRC) is an international competition that encourages the development of robots for performing rescue tasks in disaster zones. Some key elements of rescue robots that need further improvement are the ability to act autonomously, the mode and reliability of remote operation, the limitations of power cords, the ability to get in and out of vehicles, and dexterity that does not compromise robustness, strength, mobility, and balance. 3

Because disaster relief tasks require operating equipment and maneuvering in buildings designed for humans, most rescue robots have human-like outlook and functionalities. Atlas is a DARPA-funded project to develop humanoid robots to serve in combat fields and operate in tough terrain with minimal guidance from remote human operators. 4 SAFFiR, 5 a humanoid robot that functions as a firefighter, can operate fire-suppressing equipment, see through smoke, and navigate passageways, ladders, and hatches of a ship even when the ocean is rough. The remote control and communication capability of rescue robots ensure the safety of human operators and open the possibility of crowdsourcing—an effort employed in the search for Malaysia Airlines Flight 370.

Existing robot technology is promising for disaster relief. Collaboration between researchers and the industry could bridge the gap between the theoretical and practical side of rescue robot technology, lending to designs optimized for manufacturing and cost-effectiveness. Robotic responders with the required qualities to operate in disaster environments will provide invaluable assistance to rescue efforts.

Acknowledgment

ICHF receives salary support from the Centers for Disease Control and Prevention (15IPA1509134). This letter is not related to ICHF’s CDC-supported research.

Disclaimer

The CDC had no role in the writing, submission, or publication of this letter. This letter does not represent the official positions of the CDC or the US Government.

References

1. Associated Press in Beijing. Tianjin explosion: China sets final death toll at 173, ending search for survivors. The Guardian (London). http://www.theguardian.com/world/2015/sep/12/tianjin-explosion-china-sets-final-death-toll-at-173-ending-search-for-survivors. Published September 12, 2015. Accessed February 10, 2016.
2. Boyette, C. Robots, drones and heart-detectors: how disaster technology is saving lives. CNN website. http://www.cnn.com/2015/08/24/us/robot-disaster-technology/. Published October 5, 2015. Accessed August 25, 2015.
3. Rosen, M. Robots to the rescue: DARPA’s robotics challenge inspires new disaster-relief technology. Science News. 2014;186(12):16-20.
4. Feng, S, Xinjilefu, X, Atkeson, C, Kim, J. Optimization based controller design and implementation for the Atlas robot in the DARPA Robotics Challenge Finals. Preprint submitted to 2015 IEEE-RAS International Conference on Humanoid Robots, July 7, 2015. Carnegie Mellon University, School of Computer Science website. http://www.cs.cmu.edu/~cga/drc/ICHR15_0025_MS.pdf. Accessed September 5, 2015.
5. Kim, JH, Lattimer, BY. Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Safety Journal. 2015;72:40-49.