Skip to main content Accessibility help
×
Home

Evaluation of Gamma Radiation-Induced Biochemical Changes in Skin for Dose Assesment: A Study on Small Experimental Animals

  • Sandeep Kumar Soni (a1), Mitra Basu (a2), Priyanka Agrawal (a2), Aseem Bhatnagar (a2) and Neelam Chhillar (a1)...

Abstract

Objective

Researchers have been evaluating several approaches to assess acute radiation injury/toxicity markers owing to radiation exposure. Keeping in mind this background, we assumed that whole-body irradiation in single fraction in graded doses can affect the antioxidant profile in skin that could be used as an acute radiation injury/toxicity marker.

Methods

Sprague-Dawley rats were treated with CO-60 gamma radiation (dose: 1-5 Gy; dose rate: 0.85 Gy/minute). Skin samples were collected (before and after radiation up to 72 hours) and analyzed for glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (LPx).

Results

Intra-group comparison showed significant differences in GSH, GPx, SOD, and CAT, and they declined in a dose-dependent manner from 1 to 5 Gy (P value<0.01, r value: 0.3-0.5). LPx value increased (P value<0.01, r value: 0.3-0.5) as the dose increased, except in 1 Gy (P value>0.05).

Conclusions

This study suggests that skin antioxidants were sensitive toward radiation even at a low radiation dose, which can be used as a predictor of radiation injury and altered in a dose-dependent manner. These biochemical parameters may have wider application in the evaluation of radiation-induced skin injury and dose assessment. (Disaster Med Public Health Preparedness. 2019;13:197–202).

Copyright

Corresponding author

Correspondence and reprint requests to Dr Neelam Chhillar, Department of Neurochemistry, Institute of Human Behavior and Allied Sciences, Dilshad Garden, Delhi 110095, India (e-mail: chhillarnlm@gmail.com).

References

Hide All
1. Stone, HB, Coleman, NC, Anscher, MS, et al. Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol. 2003;4:529-536.
2. Hall, EJ, Giaccia, AJ. Radiobiology for the Radiologist, 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006.
3. Kohen, R. Skin antioxidants: their role in aging and in oxidative stress – new approaches for their evaluation. Biomed Pharmacother. 1999;53:181-192.
4. Kohen, R, Gati, I. Skin low molecular weights antioxidants and their role in aging and in oxidative stress. Toxicology. 2000;148:149-157.
5. Spitz, DR, Azzam, EI, Li, JJ, et al. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 2004;23:311-322.
6. Kaspler, P, Chen, R, Hyrien, O, et al. Biodosimetry using radiation-induced micronuclei in skin fibroblasts. Int J Radiat Biol. 2011;87:824-838.
7. Hoashi, T, Okochi, H, Kadono, T, et al. Case of acute radiation syndrome from the dermatological aspect. Br J Dermatol. 2008;158:597-602.
8. Jamall, IS, Smith, JS. Effect of cadmium on glutathione peroxidase, superoxide dismutase and lipid peroxidation in rat heart: a possible mechanism of cadmium cardiotoxicity. Toxicol Appl Pharmacol. 1985;80:33-42.
9. Marklund, S, Marklund, G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469-474.
10. Sazuka, Y, Tanizawa, H, Takino, Y. Effect of adriamycin on the activities of superoxide dismutase, glutathione peroxidase and catalase in tissues of mice. Jpn J Cancer Res. 1989;80:89-94.
11. Beutler, E, Duron, O, Kelly, BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888.
12. Aebi, H. Catalase in-vitro. Methods Enzymol. 1984;105:121-126.
13. Lowry, OH, Rosebrough, NJ, Farr, AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265-275.
14. Petkau, A. Role of superoxide dismutase in modification of radiation injury. Br J Cancer. 1987;8:87-95.
15. Shindo, Y, Witt, E, Han, D, et al. Enzymatic and non-enzymatic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1994;102:122-124.
16. Meister, A, Anderson, ME. Glutathione. Ann Rev Biochem. 1983;52:711-760.
17. Brigelius-Fhole, R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med. 1999;27:951-965.
18. Siems, W, Gartner, C, Kranz, D, et al. Long term effects of monthly low dose whole body irradiation on the glutathione status and thiobarbituric acid reactive substance in different organs of male Wistar rats. Radiobiol Radiother. 1990;31:257-263.
19. Baraboi, VA, Oliinyk, SA, Blium, IO, et al. Dynamics of lipid peroxidation in blood and organs of rats after irradiation at low doses and the effect of antioxidants. Ukr Biokhim Zh. 1994;66:39-47.
20. Navarro, J, Obrador, E, Pellicer, JA, et al. Blood glutathione as an index of radiation induced oxidative stress in mice and humans. Free Radic Biol Med. 1997;22:1203-1207.
21. Fuchs, J, Hufljet, M, Rothfuss, L, et al. Impairment of enzymatic and non-enzymatic antioxidants in skin by UV-B irradiation. J Invest Dermatol. 1989;93:769-773.
22. Younes, M, Seigers, CP. Mechanistic aspects of enhanced lipid peroxidation following glutathione depletion in vivo. Chem Biol Interact. 1981;34:257-266.
23. Meffert, H, Diezel, W, Sönnichsen, N. Stable lipid peroxidation products in human skin: detection, ultraviolet induced increase, and pathogenic importance. Experientia. 1976;32:1397-1398.
24. Cohen, G. The Fenton reaction. In: Greenwald RA, ed. Handbook of Methods for Oxygen Radical Research. Bern: CRC Press; 1986:55-64.

Keywords

Type Description Title
WORD
Supplementary materials

Kumar Soni et al. supplementary material
Table S1

 Word (110 KB)
110 KB

Evaluation of Gamma Radiation-Induced Biochemical Changes in Skin for Dose Assesment: A Study on Small Experimental Animals

  • Sandeep Kumar Soni (a1), Mitra Basu (a2), Priyanka Agrawal (a2), Aseem Bhatnagar (a2) and Neelam Chhillar (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed