Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access
  • Cited by 1

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Detecting Residual Fluorine 18 From a Medical PET-CT Procedure During Population Whole Body Counter Screening in Fukushima
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Detecting Residual Fluorine 18 From a Medical PET-CT Procedure During Population Whole Body Counter Screening in Fukushima
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Detecting Residual Fluorine 18 From a Medical PET-CT Procedure During Population Whole Body Counter Screening in Fukushima
        Available formats
        ×
Export citation

After the Fukushima Daiichi nuclear incident in 2011, radiation contamination of the affected area raised public health concerns about internal radiation exposure.Reference Tsubokura, Gilmour and Takahashi 1 Internal radiation exposure screening using a whole body counter (WBC) (Fastscan Model 2251, Canberra Inc, Meriden, CT) has been performed for the affected residents in Soma City, 40 km north of the Fukushima Daiichi nuclear power plant (Figure 1). Analysis was performed by use of the Apex-InVivo and Genie software (Canberra Inc). Detection limits were 220 Bq for cesium 134 and 250 Bq for cesium 137 with a 2-minute scan.

Figure 1 Whole Body Counter. Internal radiation exposure screening has been performed by using a whole body counter in the affected areas of the 2011 Fukushima Daiichi nuclear power plant incident.

During a WBC screening of a 63-year-old examinee, a prominent peak at 511 keV was unexpectedly seen (Figure 2). Detailed history taking revealed that radioactive fluorine 18 (18F) fluorodeoxyglucose (FDG) was given to the patient the day before the WBC scan for the purpose of cancer screening by positron emission tomography (PET)/computed tomography (CT) scanning.

Figure 2 Results of Whole Body Counter Scanning. We unexpectedly detected a peak at 511 keV (left arrow) that overlapped with the radioactive cesium peak (middle arrow). Potassium 40 was detected at an ordinary level of 1725 Bq/body (right arrow).

FDG-PET/CT scanning is a diagnostic imaging technology that uses the two 511-keV gamma rays emitted at the moment of positron annihilation,Reference Delbeke, Coleman and Guiberteau 2 and the detected peak evidently reflects the remaining [18F]FDG. To our knowledge, this is the first report of detection of an [18F]FDG peak by WBC scanning.

Although the possibility of the presence of medical imaging and therapeutic radioactive isotopes has previously been described as a potential concern in homeland security screening,Reference Dauer, Williamson and Germain 3 , Reference Gitler 4 this case uncovered the undesirable aspect that FDG administered for PET/CT scanning shows a peak adjacent to those of target radionuclides for Fukushima Daiichi incident response WBC screening, such as cesium 134 and cesium 137. Clinicians should be careful not to overestimate the peaks from these target nuclides.

Together with the previous findings about detection of iodine 131 administered for thyroid cancer treatment,Reference Tsubokura, Nomura and Ishii 5 the present results suggest that careful history taking is pivotal for accurate assessment of radiation contamination among residents living in the area affected by the nuclear disaster.

References

1. Tsubokura, M, Gilmour, S, Takahashi, K, et al. Internal radiation exposure after the Fukushima nuclear power plant disaster. JAMA. 2012;308:669-670.
2. Delbeke, D, Coleman, RE, Guiberteau, MJ, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885-895.
3. Dauer, LT, Williamson, MJ St, Germain, J, et al. Tl-201 stress tests and homeland security. J Nucl Cardiol. 2007;14:582-588.
4. Gitler, B. Re: Tl-201 stress tests and homeland security. J Nucl Cardiol. 2007;14:904.
5. Tsubokura, M, Nomura, S, Ishii, T, et al. Detection of 131I in a patient with thyroid cancer by internal radiation exposure screening using a whole-body counter in Fukushima. Clin Nucl Med. 2014;39:281-282.