Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T22:44:49.684Z Has data issue: false hasContentIssue false

Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development

Published online by Cambridge University Press:  06 May 2015

Zoë H. Brett
Affiliation:
Tulane University School of Medicine
Kathryn L. Humphreys
Affiliation:
Tulane University School of Medicine
Alison S. Fleming
Affiliation:
University of Toronto
Gary W. Kraemer
Affiliation:
University of Toronto
Stacy S. Drury*
Affiliation:
Tulane University School of Medicine
*
Address correspondence and reprint requests to: Stacy S. Drury, Tulane University School of Medicine, 1430 Tulane Avenue, 8055, New Orleans, LA 70112; E-mail: sdrury@tulane.edu.

Abstract

Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic–pituitary–adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal–infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, V. M., King, S. J., Novakov, M., Burton, C. L., & Fleming, A. S. (2011). Accumbal dopamine function in postpartum rats that were raised without their mothers. Hormones and Behavior, 60, 632643.CrossRefGoogle ScholarPubMed
Agren, H., Mefford, I. N., Rudorfer, M. V., Linnoila, M., & Potter, W. (1986). A non-experimental approach to the 5HIAA-HVA correlation in human CSF. Journal of Psychiatric Research, 20, 175193.CrossRefGoogle Scholar
Ainsworth, M. D. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment: A psychological study of the strange situation. Hillsdale, NJ: Erlbaum.Google Scholar
Akbari, E. M., Chatterjee, D., Levy, F., & Fleming, A. S. (2007). Experience-dependent cell survival in the maternal rat brain. Behavioral Neuroscience, 121, 10011011.CrossRefGoogle ScholarPubMed
Andersena, A. H., Zhanga, Z., Barbera, T., Rayensd, W. S., Zhanga, J., Grondina, R., et al. (2002). Functional MRI studies in awake rhesus monkeys: Methodological and analytical strategies. Journal of Neuroscience Methods, 118, 141152.CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., Dobrova-Krol, N., & van IJzendoorn, M. (2011). Impact of institutional care on attachment disorganization and insecurity of Ukrainian preschoolers: Protective effect of the long variant of the serotonin transporter gene (5HTT). International Journal of Behavioral Development, 36, 1118.CrossRefGoogle Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Research Review: Genetic vulnerability or differential susceptibility in child development: The case of attachment. Journal of Child Psychology and Psychiatry, 48, 11601173.CrossRefGoogle ScholarPubMed
Barnett, J. H., Heron, J., Goldman, D., Jones, P. B., & Xu, K. (2009). Effects of catechol-o-methyltransferase on normal variation in the cognitive function of children. American Journal of Psychiatry, 166, 909916.CrossRefGoogle ScholarPubMed
Barr, C. S., Newman, T. K., Lindell, S., Shannon, C., Champoux, M., Lesch, K. P., et al. (2004). Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates. Archives of General Psychiatry, 61, 11461152.CrossRefGoogle ScholarPubMed
Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., et al. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic–hypothalamic–pituitary–adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733738.CrossRefGoogle ScholarPubMed
Barrett, C. E., Noble, P., Hanson, E., Pine, D. S., Winslow, J. T., & Nelson, E. E. (2009). Early adverse rearing experiences alter sleep-wake patterns and plasma cortisol levels in juvenile rhesus monkeys. Psychoneuroendocrinology, 34, 10291040.CrossRefGoogle ScholarPubMed
Bauer, P. M., Hanson, J. L., Pierson, R. K., Davidson, R. J., & Pollak, S. D. (2009). Cerebellar volume and cognitive functioning in children who experienced early deprivation. Biological Psychiatry, 66, 11001106.CrossRefGoogle ScholarPubMed
Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., & Hensch, T. K. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience, 30, 1496414971.CrossRefGoogle ScholarPubMed
Behen, M. E., Muzik, O., Saporta, A. S., Wilson, B. J., Pai, D., Hua, J., et al. (2009). Abnormal fronto-striatal connectivity in children with histories of early deprivation: A diffusion tensor imaging study. Brain Imaging and Behavior, 3, 292297.CrossRefGoogle ScholarPubMed
Belay, H., Burton, C. L., Lovic, V., Meaney, M. J., Sokolowski, M., & Fleming, A. S. (2011). Early adversity and serotonin transporter genotype interact with hippocampal glucocoricoid receptor mRNA expression, corticosterone, and behavior in adult male rats. Behavioral Neuroscience, 125, 150160.CrossRefGoogle Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Bernard, K., & Dozier, M. (2010). Examining infants' cortisol responses to laboratory tasks among children varying in attachment disorganization: Stress reactivity and return to baseline. Developmental Psychobiology, 46, 17711778.CrossRefGoogle ScholarPubMed
Binder, E. B. (2009). The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology, 34, S186S195.CrossRefGoogle ScholarPubMed
Bos, K. J., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2009). Effects of early psychosocial deprivation on the development of memory and executive function. Frontiers in Behavioral Neuroscience, 3, 17.CrossRefGoogle ScholarPubMed
Bowlby, J. (1951). Maternal care and mental health. New York: Columbia University Press.Google ScholarPubMed
Bradley, R. H., & Corwyn, R. F. (2008). Infant temperament, parenting, and externalizing behavior in first grade: A test of the differential susceptibility hypothesis. Journal of Child Psychology and Psychiatry, 49, 124131.CrossRefGoogle Scholar
Brake, W. G., Zhang, T. Y., Diorio, J., Meaney, M. J., & Gratton, A. (2004). Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats. European Journal of Neuroscience, 19, 18631874.CrossRefGoogle ScholarPubMed
Brett, Z. H., Binder, E. B., Esteves, K. C., Menke, A., Klengel, T., Zeanah, C. H., et al. (2014). Dysregulation of salivary FKPB5 mRNA expression in children exposed to early adversity: Implications for altered stress reactivity. Manuscript in preparation.Google Scholar
Brett, Z. H., Humphreys, K. L., Smyke, A. T., Gleason, M. M., Nelson, C. A., Zeanah, C. H., et al. (2014). 5HTTLPR-dependent differential susceptibility to early caregiving for externalizing behavior. Developmental Psychobiology. Advance online publication.Google Scholar
Brett, Z. H., Sheridan, M., Humphreys, K., Smyke, A., Gleason, M. M., Fox, N., et al. (2014). A neurogenetics approach to defining differential susceptibility to institutional care. International Journal of Behavioral Development, 31, 21502160.Google Scholar
Burton, C. L., Chatterjee, D., Chatterjee-Chakraborty, M., Lovic, V., Grella, S. L., Steiner, M., et al. (2007). Prenatal restraint stress and motherless rearing disrupts expression of plasticity markers and stress-induced corticosterone release in adult female Sprague–Dawley rats. Brain Research, 1158, 2838.CrossRefGoogle ScholarPubMed
Burton, C. L., Lovic, V., & Fleming, A. S. (2006). Early adversity alters attention and locomotion in adult Sprague–Dawley rats. Behavioral Neuroscience, 120, 665675.CrossRefGoogle ScholarPubMed
Caldji, C., Diorio, J., & Meaney, M. J. (2003). Variations in maternal care alter GABA(A) receptor subunit expression in brain regions associated with fear. Neuropsychopharmacology, 28, 19501959.CrossRefGoogle ScholarPubMed
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences, 95, 53355340.CrossRefGoogle ScholarPubMed
Cameron, N. M., Fish, E. W., & Meaney, M. J. (2008). Maternal influences on the sexual behavior and reproductive success of the female rat. Hormones and Behavior, 54, 178184.CrossRefGoogle ScholarPubMed
Capitanio, J. P., Mendoza, S. P., Mason, W. A., & Maninger, N. (2005). Rearing environment and hypothalamic–pituitary–adrenal regulation in young rhesus monkeys (Macaca mulatta). Developmental Psychobiology, 46, 318330.CrossRefGoogle ScholarPubMed
Carlson, M., & Earls, F. (1997). Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Annals of New York Academy of Sciences, 807, 419429.CrossRefGoogle ScholarPubMed
Champagne, D. L., Bagot, R. C., van Hasselt, F., Ramakers, G., Meaney, M. J., de Kloet, E. R., et al. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 60376045.CrossRefGoogle ScholarPubMed
Champagne, F. A., Francis, D. D., Mar, A., & Meaney, M. J. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiology & Behavior, 79, 359371.CrossRefGoogle ScholarPubMed
Champagne, F. A., Weaver, I. C. G., Diorio, J., Dymov, S., Szyf, M., & Meaney, M. J. (2006). Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology, 147, 29092915.CrossRefGoogle ScholarPubMed
Champoux, M., Bennett, A., Shannon, C., Higley, J. D., Lesch, K. P., & Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7, 10581063.CrossRefGoogle ScholarPubMed
Champoux, M., Coe, C. L., Schanberg, S. M., Kuhn, C. M., & Suomi, S. J. (1989). Hormonal effects of early rearing conditions in the infant rhesus monkey. American Journal of Primatology, 19, 111117.CrossRefGoogle ScholarPubMed
Chatterjee, D., Chatterjee-Chakraborty, M., Rees, S., Cauchi, J., deMedeiros, C. B., & Fleming, A. S. (2007). Maternal isolation alters the expression of neural proteins during development: “Stroking” stimulation reverses these effects. Brain Research, 1158, 1127.CrossRefGoogle ScholarPubMed
Chisolm, K., & Chisholm, K. (1998). A three-year follow-up of attachment and indiscriminate friendliness in children adopted from Romanian orphanages. Child Development, 69, 10921106.Google Scholar
Chugani, H. T., Behen, M. E., Muzik, O., Juhasz, C., Nagy, F., & Chugani, D. C. (2001). Local brain functional activity following early deprivation: A study of postinstitutionalized Romanian orphans. NeuroImage, 14, 12901301.CrossRefGoogle ScholarPubMed
Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., et al. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497, 332337.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. (2012). Gene × Environment interaction and resilience: Effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Development and Psychopathology, 24, 411427.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F., Gunnar, M., & Toth, S. (2010). The differential impacts of early physical and sexual abuse and internalizing problems on daytime cortisol rhythm in school-aged children. Child Development, 81, 252269.CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F., Toth, S., & Sturge-Apple, M. (2011). Normalizing the development of cortisol regulation in maltreated infants through preventive interventions. Development and Psychopathology, 23, 789800.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Toth, S. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625.CrossRefGoogle ScholarPubMed
Clarke, A. S. (1993). Social rearing effects on HPA axis activity over early development and in response to stress in young rhesus monkeys. Developmental Psychobiology, 26, 433447.CrossRefGoogle Scholar
Clarke, A. S., Kraemer, G. W., & Kupfer, D. J. (1998). Effects of rearing condition on HPA axis response to fluoxetine and desipramine treatment over repeated social separations in young rhesus monkeys. Psychiatry Research, 79, 91104.CrossRefGoogle ScholarPubMed
Colvert, E., Rutter, M., Kreppner, J., Beckett, C., Castle, J., Groothues, C., et al. (2008). Do theory of mind and executive function deficits underlie the adverse outcomes associated with profound early deprivation? Findings from the English and Romanian Adoptees Study. Journal of Abnormal Child Psychology, 36, 10571068.CrossRefGoogle ScholarPubMed
Coplan, J. D., Andrews, M. W., Rosenblum, L. A., Owens, M. J., Friedman, S., Groman, J. M., et al. (1996). Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: Implications for the pathophysiology of mood and anxiety disorders. Proceedings of the National Academy of Sciences, 93, 16191623.CrossRefGoogle ScholarPubMed
Coplan, J. D., Rosenblum, L. A., & Gorman, J. M. (1995). Primate models of anxiety. Psychiatric Clinics of North America, 18, 727743.CrossRefGoogle ScholarPubMed
Cusack, C. L., Swahari, V., Henley, W., Ramsey, J. M., & Deshmukh, M. (2013). Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nature Communications, 4, 1876.CrossRefGoogle ScholarPubMed
Cuthbert, B. N., & Kozak, M. J. (2013). Constructing constructs for psychopathology: The NIMH research domain criteria. Journal of Abnormal Psychology, 122, 928937.CrossRefGoogle ScholarPubMed
Dalley, J., Everitt, B., & Robbins, T. (2011). Impusivity, compulsivity, and top-down cognitive control. Neuron, 69, 680694.CrossRefGoogle Scholar
Denic, A., Macura, S. I., Mishra, P., Gamez, J. D., Rodriguez, M., & Pirko, I. (2011). MRI in rodent models of brain disorders. American Society for Experimental NeuroTherapeutics, 8, 312.CrossRefGoogle ScholarPubMed
Dent, G. W., Smith, M. A., & Levine, S. (2000). Rapid induction of corticotropin-releasing hormone gene transcription in the paraventricular nucleus of the developing rat. Endocrinology, 141, 15931598.CrossRefGoogle ScholarPubMed
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Cyr, C., & Juffer, F. (2008). Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behavior and Development, 31, 539553.CrossRefGoogle ScholarPubMed
Dozier, M., Manni, M., Gordon, M. K., Pelosos, E., Gunnar, M., Stovall-McClough, K. C., et al. (2006). Foster children's diurnal produciton of cortisol: An exploratory study. Child Maltreatment, 11, 189197.CrossRefGoogle Scholar
Dozier, M., Peloso, E., Lindhiem, O., Gordon, M. K., Manni, M., Sepulveda, S., et al. (2006). Developing evidence-based interventions for foster children: An example of a randomized clinical trial with infants and toddlers. Journal of Social Issues, 62, 767785.CrossRefGoogle Scholar
Drury, S. S., Gleason, M. M., Theall, K. P., Smyke, A. T., Nelson, C. A., Fox, N. A., et al. (2012). Genetic sensitivity to the caregiving context: The influence of 5HTTLPR and BDNF val66met on indiscriminate social behavior. Physiology & Behavior, 106, 728735.CrossRefGoogle Scholar
Drury, S. S., Theall, K. P. H. P., Smyke, A. T., Keats, B. J. B., Egger, H. L., Nelson, C. A., et al. (2010). Modification of depression by COMT val158met polymorphism in children exposed to early severe psychosocial deprivation. Child Abuse and Neglect, 34, 387395.CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Erickson, K., Gabry, K. E., Lindell, S., Champoux, M., Schulkin, J., Gold, P., et al. (2005). Social withdrawal behaviors in nonhuman primates and changes in neuroendocrine and monoamine concentrations during a separation paradigm. Developmental Psychobiology, 46, 331339.CrossRefGoogle ScholarPubMed
Feng, X., Wang, L., Yang, S., Qin, D., Wang, J., Li, C., et al. (2011). Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proceedings of the National Academy of Sciences, 109, 16.Google Scholar
Finkelhor, D., & Baron, L. (1986). High-risk children. In Finkelhor, D., Arajii, S., & Baron, L. (Eds.), A sourcebook of child sexual abuse (pp. 6088). Beverly Hills, CA: Sage.Google Scholar
Finkelhor, D., & Berliner, L. (1995). Research on the treatment of sexually abused children: A review and recommendations. Journal of the American Academy of Child & Adolescent Psychiatry, 34, 14081423.CrossRefGoogle ScholarPubMed
Fisher, L., Ames, E. W., Chisholm, K., & Savoie, L. (1997). Problems reported by parents of Romanian orphans adopted to British Columbia. International Journal of Behavioural Development, 20, 6782.CrossRefGoogle Scholar
Fisher, P. A., Gunnar, M., Dozier, M., Bruce, J., & Pears, K. C. (2006). Effects of therapeutic interventions for foster children on behaivoral problems, caregiver attachment, and stress regulatory neural systems. Annals of the New York Academy of Sciences, 40, 111.Google Scholar
Fletcher, P., Rizos, Z., Noble, K., & Higgings, G. A. (2011). Impulsive action induced by amphetamine, cocaine and MK801 is reduced by 5-HT(2C) receptor stimulation and 5-HT(2A) receptor blockade. Neuropharmacology, 61, 468477.CrossRefGoogle ScholarPubMed
Fox, N. A., Almas, A. N., Degnan, K. A., Nelson, C. A., & Zeanah, C. H. (2011). The effects of severe psychosocial deprivation and foster care intervention on cognitive development at 8 years of age: Findings from the Bucharest Early Intervention Project. Journal of Child Psychology and Psychiatry, 52, 919928.CrossRefGoogle ScholarPubMed
Francis, D. D., Diorio, J., Plotsky, P. M., & Meaney, M. J. (2002). Environmental enrichment reverses the effects of maternal separation on stress reactivity. Journal of Neuroscience, 22, 78407843.CrossRefGoogle ScholarPubMed
Francis, D. D., & Meaney, M. J. (1999). Maternal care and the development of stress responses. Current Opinion in Neurobiology, 9, 128134.CrossRefGoogle ScholarPubMed
Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., et al. (2013). Early developmental emergence of human amygdala–prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences, 9, 16.Google Scholar
Gershon, J. (2002). A meta-analytic review of gender differences in ADHD. Journal of Attention Disorders, 5, 143154.CrossRefGoogle ScholarPubMed
Gizer, I. R., Ficks, C., & Waldman, I. D. (2009). Candidate gene studies of ADHD: A meta-analytic review. Human Genetics, 126, 5190.CrossRefGoogle ScholarPubMed
Gold, P. W., & Chrousos, G. P. (2002). Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Molecular Psychiatry, 7, 254275.CrossRefGoogle ScholarPubMed
Goldfarb, W. (1943). Effects of early institutional care on adolescent personality. Dissertation, 12, 106129.Google Scholar
Gonzalez, A., & Fleming, A. S. (2002). Artificial rearing causes changes in maternal behavior and c-fos expression in juvenile female rats. Behavioral Neuroscience, 116, 9991013.CrossRefGoogle ScholarPubMed
Gonzalez, A., Lovic, V., Ward, G. R., Wainwright, P. E., & Fleming, A. S. (2001). Intergenerational effects of complete maternal deprivation and replacement stimulation on maternal behavior and emotionality in female rats. Developmental Psychobiology, 38, 1132.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Gunnar, M. R., Bruce, J., & Grotevant, H. D. (2000). International adoption of institutionally reared children: Research and policy. Development and Psychopathology, 12, 677693.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from Romanian orphanages. Development and Psychopathology, 13, 611627.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & Quevedo, K. M. (2007a). Early care experiences and HPA axis regulation in children: A mechanism for later trauma vulnerability. Progress in Brain Research, 167, 137149.CrossRefGoogle Scholar
Gunnar, M. R., & Quevedo, K. M. (2007b). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.CrossRefGoogle ScholarPubMed
Gunnar, M. R., & van Dulmen, M. H. M. (2007). Behavior problems in postinstitutionalized internationally adopted children. Development and Psychopathology, 19, 129148.CrossRefGoogle ScholarPubMed
Guo, N., Yoshizaki, K., Kimura, R., Suto, F., Yanagawa, Y., & Osumi, N. (2013). A sensitive period for GABAergic interneurons in the dentate gyrus in modulating sensorimotor gating. Journal of Neuroscience, 33, 66916704.CrossRefGoogle ScholarPubMed
Hall, F. S., Wilkinson, T. H., & Robbins, T. W. (1999). Maternal deprivation of neonatal rats produces enduring changes in dopamine function. Synapse, 32, 3743.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Hall, W. G. (1975). Weaning and growth of artificially reared rats. Science, 190, 13131315.CrossRefGoogle ScholarPubMed
Hankin, B. L., Badanes, L. S., Abela, J. R. Z., & Watamura, S. E. (2010). Hypothalamic–pituitary–adrenal axis dysregulation in dysphoric children and adolescents: Cortisol reactivity to psychosocial stress from preschool through middle adolescence. Biological Psychiatry, 68, 484490.CrossRefGoogle ScholarPubMed
Harlow, H. F., Dodsworth, R. O., & Harlow, M. K. (1965). Total social isolation in monkeys. Proceedings of the National Academy of Sciences, 54, 9097.CrossRefGoogle ScholarPubMed
Harlow, H. F., Harlow, M. K., & Suomi, S. J. (1971). From thought to therapy: Lessons from a primate laboratory. American Scientist, 59, 538549.Google ScholarPubMed
Heim, C., Plotsky, P. M., & Nemeroff, C. B. (2004). Importance of studying the contributions of early adverse experience to neurobiological findings in depression. Neuropsychopharmacology, 29, 641648.CrossRefGoogle ScholarPubMed
Heinz, A., Higley, J. D., Gorey, J. G., Saunders, R. C., Jones, D. W., Hommer, D., et al. (1998). In vivo association between alcohol intoxication, aggresion, and serotinin transporter availability in nonhuman primates. American Journal of Psychiatry, 155, 10231028.CrossRefGoogle Scholar
Hensch, T. K. (2004). Critical period regulation. Annual Review of Neuroscience, 27, 549579.CrossRefGoogle ScholarPubMed
Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6, 877888.CrossRefGoogle ScholarPubMed
Hensch, T. K., & Bilimoria, P. M. (2012). Re-opening windows: Manipulating critical periods for brain development. Cerebrum, 11.Google Scholar
Higley, J. D., Haseert, M., Suomi, S. J., & Linnoila, M. (1991). Nonhuman primate model of alcohol abuse: Effects of early experience, personality, and stress on alcohol consumption. Proceedings of the National Academy of Sciences, 88, 72617265.CrossRefGoogle ScholarPubMed
Higley, J. D., King, S. T., Hasert, M. F., Champoux, M., Suomi, S. J., & Linnoila, M. (1996). Stability of interindividual differences in serotonin function and its relationship to severe aggression and competent social behavior in rhesus macaque females. Neuropsychopharmacology, 14, 6776.CrossRefGoogle ScholarPubMed
Higley, J. D., Linnoila, M., & Suomi, S. J. (1994). Ethological contributions: Experiential and genetic contributions to the expression and inhibition of aggression in primates. In Hersen, M., Ammerman, R. T., & Sisson, L. (Eds.), Handbook of agressive and destructive behavior in psychiatric patients (pp. 1732). New York: Plenum Press.CrossRefGoogle Scholar
Higley, J. D., Suomi, S. J., & Linnoila, M. (1991). CSF monoamine metabolite concentrations vary according to age, rearing, sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology, 103, 551556.CrossRefGoogle ScholarPubMed
Higley, J. D., Suomi, S. J., & Linnoila, M. (1992). A longitudinal study of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys: Effects of early experience, age, sex, and stress on continuity of individual differences. Biological Psychiatry, 32, 127145.CrossRefGoogle Scholar
Hill, S. D., McCormack, S. A., & Mason, W. A. (1973). Effects of artificial mothers and visual experience on adrenal responsiveness of infant monkeys. Developmental Psychobiology, 6, 421429.CrossRefGoogle ScholarPubMed
Hornak, J., O'Doherty, J., Bramham, J., Rolls, E. T., Morris, R. G., Bullock, P. R., et al. (2004). Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. Journal of Cognitive Neuroscience, 16, 463478.CrossRefGoogle ScholarPubMed
Hostinar, C. E., & Gunnar, M. (2013). Future directions in the study of social relationships as stress regulators across development. Journal of Clinical Child and Adolescent Psychology, 42, 564575.CrossRefGoogle Scholar
Hostinar, C. E., Stellern, S. A., Schaefer, C., Carlson, S. M., & Gunnar, M. R. (2012). Associations between early life adversity and executive function in children adopted internationally from orphanages. Proceedings of the National Academy of Sciences, 109, 1720817212.CrossRefGoogle ScholarPubMed
Hostinar, C. E., Sullivan, R., & Gunnar, M. (2013). Psychobiological mechanisms underlying the social buffering of the HPA axis: A review of animal models and human studies across development. Psychological Bulletin, 140, 256282.CrossRefGoogle Scholar
Huang, P. L., & Lo, E. H. (1998). Genetic analysis of NOS isoforms using nNOS and eNOS knockout animals. Progress in Brain Research, 118, 1325.CrossRefGoogle ScholarPubMed
Huizinga, H., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 20172036.CrossRefGoogle Scholar
Humphreys, K. L., Lee, S. S., Telzer, E. H., Gabard-Durnam, L. J., Goff, B., Flannery, J., et al. (in press). Exploration–exploitation strategy is dependent on early experience. Developmental Psychobiology.Google Scholar
Humphreys, K. L., Lee, S. S., Telzer, E. H., Gabard-Durnam, L., Goff, B., & Tottenham, N. (2014). Risky decision-making in children and adolescents following maternal deprivation. Manuscript submitted for publication.Google Scholar
Humphreys, K. L., Zeanah, C. H., Nelson, C. A., Fox, N. A., & Drury, S. S. (2014). Dopamine transporter genotype predicts differential inattention/overactivity symptom dimension trajectory across early development. Manuscript submitted for publication.Google Scholar
Humphreys, K. L., Zeanah, C. H., & Scheeringa, M. (2014). Infant development: The first 3 years of life (4th ed.). Philadelphia, PA: W. B. Saunders.Google Scholar
Ichise, M., Vines, D. C., Gura, T., Anderson, G. M., Suomi, S. J., Higley, J. D., et al. (2006). Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. Journal of Neuroscience, 26, 46384643.CrossRefGoogle ScholarPubMed
Iwata, E., Kikusui, T., Takeuchi, Y., & Mori, Y. (2007). Fostering and environmental enrichment ameliorate anxious behavior induced by early weaning in Balb/c mice. Physiology & Behavior, 91, 318324.CrossRefGoogle ScholarPubMed
Jaaskelainen, T., Makkonen, H., & Palvimo, J. J. (2011). Steroid up-regulation of FKBP51 and its role in hormone signaling. Current Opinion in Pharmacology, 11, 326331.CrossRefGoogle ScholarPubMed
Jacobs, E., Miller, L. C., & Tirella, L. G. (2010). Developmental and behavioral performance of internationally adopted preschoolers: A pilot study. Child Psychiatry and Human Development, 41, 1529.CrossRefGoogle ScholarPubMed
Jonas, W., Mileva-Seitz, V., Girard, A. W., Bisceglia, R., Kennedy, J. L., Sokolowski, M., et al. (2013). Genetic variation in oxytocin rs2740210 and early adversity associated with postpartum depression and breastfeeding duration. Genes, Brain, and behavior. Advance online publication.CrossRefGoogle Scholar
Juffer, F., & van IJzendoorn, M. H. (2005). Behavior problems and mental health referrals of international adoptees: A meta-analysis. Journal of the American Medical Association, 293, 25012515.CrossRefGoogle ScholarPubMed
Jurado, M. B., & Rosselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17, 213233.CrossRefGoogle ScholarPubMed
Kertes, D. A., Gunnar, M. R., Madsen, N. J., & Long, J. D. (2008). Early deprivation and home basal cortisol levels: A study of internationally adopted children. Development and Psychopathology, 20, 473491.CrossRefGoogle Scholar
Kraemer, G. W. (1992). A psychobiological theory of attachment. Behavioral and Brain Sciences, 15, 493511.CrossRefGoogle ScholarPubMed
Kraemer, G. W. (1997). The psychobiology of early social attachment in rhesus monkeys: Clinical implications. Annals of the New York Academy of Sciences, 807, 401418.CrossRefGoogle ScholarPubMed
Kraemer, G. W., & Clarke, A. S. (1996). Social attachment, brain function, and aggression. Annals of the New York Academy of Sciences, 794, 121135.CrossRefGoogle ScholarPubMed
Kraemer, G. W., Ebert, M. H., Lake, C. R., & McKinney, W. T. (1984). Hypersensitivity to d-amphetamine several years after early social deprivation in rhesus monkeys. Psychopharmacology, 82, 266271.CrossRefGoogle ScholarPubMed
Kraemer, G. W., Ebert, M. H., Schmidt, D. E., & McKinney, W. T. (1989). A longitudinal study of the effect of different social rearing conditions on cerebrospinal fluid norepinephrine and biogenic amine metabolites in rhesus monkeys. Neuropsychopharmacology, 2, 175189.CrossRefGoogle ScholarPubMed
Kraemer, G. W., Ebert, M. H., Schmidt, D. E., & McKinney, W. T. (1991). Strangers in a strange land: A psychobiological study of infant monkeys before and after separation from real or inanimate mothers. Child Development, 62, 548566.CrossRefGoogle ScholarPubMed
Kraemer, G. W., Lamb, M. E., Liotti, G. A., Lyons-Ruth, K., Meinlschmidt, G., Schölmerich, A., et al. (2004). Attachment and bonding: A new synthesis. Group report: Adaptive and maladaptive outcomes. Paper presented at the 92nd Dahlem Workshop.Google Scholar
Kraemer, G. W., Schmidt, D. E., & Ebert, M. H. (1997). The behavioral neurobiology of self-injurious behavior in rhesus monkeys: Current concepts and relations to impulsive behavior in humans. Annals of the New York Academy of Sciences, 836, 1238.CrossRefGoogle ScholarPubMed
Kreppner, J., O'Connor, T. G., Rutter, M., & the English and Romanian Adoptees Study Team. (2001). Can inattention/overactivity be an institutional deprivation syndrome? Journal of Abnormal Child Psychology, 29, 513528.CrossRefGoogle ScholarPubMed
Kumsta, R., Stevens, S. E., Brookes, K. J., Schlotz, W., Castle, J., Beckett, C., et al. (2010). 5HTT genotype moderates the influence of early institutional deprivation on emotional problems in adolescence: Evidence from and English and Romanian Adoptee (ERA) study. Journal of Child Psychology and Psychiatry, 51, 755762.CrossRefGoogle ScholarPubMed
Le Mare, L., Audet, K., & Kurytnik, K. (2007). A longitudinal study of service use in families of children adopted from Romanian orphanages. International Journal of Behavioral Development, 31, 242251.CrossRefGoogle Scholar
Levenson, J. M., & Sweatt, J. D. (2006). Epigenetic mechanisms: A common theme in vertebrate and invertebrate memory formation. Cellular and Molecular Life Sciences, 63, 10091016.CrossRefGoogle ScholarPubMed
Levine, S. (1994). The ontogeny of the hypothalamic–pituitary–adrenal axis: The influence of many factors. Annals of the New York Academy of Sciences, 746, 275288.CrossRefGoogle Scholar
Levine, S. (2002). Regulation of the hypothalamic–pituitary–adrenal axis in the neonatal rat: The role of maternal behavior. Neurotoxicity Research, 4, 557564.CrossRefGoogle ScholarPubMed
Levine, S., Huchton, D. M., Wiener, S. G., & Rosenfeld, P. (1991). Time course of the effect of maternal deprivation on the hypothalamic–pituitary–adrenal axis in the infant rat. Developmental Psychobiology, 24, 547558.CrossRefGoogle ScholarPubMed
Levy, F., Melo, A. I., Galef, G. B. J., Madden, M., & Fleming, A. S. (2003). Complete maternal deprivation affects social, but not spatial, learning in adult rats. Developmental Psychobiology, 43, 177191.CrossRefGoogle Scholar
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science, 277, 16591662.CrossRefGoogle ScholarPubMed
Lovic, V., Belay, H., Walker, C.-D., Burton, C. L., Meaney, M. J., Sokolowski, M., et al. (2013). Early postnatal experience and DRD2 genotype affect dopamine receptor expression in the rat ventral striatum. Behavioural Brain Research, 15, 278282.CrossRefGoogle Scholar
Lovic, V., & Fleming, A. S. (2004). Artificially-reared female rats show reduced prepulse inhibition and deficits in the attentional set shifting task–reversal of effects with maternal-like licking stimulation. Behavioural Brain Research, 148, 209219.CrossRefGoogle ScholarPubMed
Lovic, V., Fleming, A. S., & Fletcher, P. J. (2006). Early life tactile stimulation changes adult rat responsiveness to amphetamine. Pharmacology Biochemistry and Behavior, 84, 497503.CrossRefGoogle ScholarPubMed
Lovic, V., Keen, D., Fletcher, P., & Fleming, A. (2011). Early life maternal separation and social isolation produce an increase in impulsive action but not impulsive choice. Behavioral Neuroscience, 12, 481491.CrossRefGoogle Scholar
Lupien, S. J., McEwen, B. S., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.CrossRefGoogle ScholarPubMed
MacLean, K. (2003). The impact of institutionalization on child development. Development and Psychopathology, 15, 853884.CrossRefGoogle ScholarPubMed
Maestripieri, D. (2009). Primate psychology. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Makinodan, M., Rosen, K. M., Ito, S., & Corfas, G. (2012). A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science, 337, 13571360.CrossRefGoogle ScholarPubMed
Malkova, L., Heuer, E., & Saunders, R. C. (2006). Longitudinal magnetic resonance imaging study of rhesus monkey brain development. European Journal of Neuroscience, 24, 32043212.CrossRefGoogle ScholarPubMed
Mason, W. A. (1979). Wanting and knowing: A biological perspective on maternal deprivation. Hillsdale, NJ: Erlbaum.Google Scholar
McLaughlin, K. A., Fox, N. A., Zeanah, C. H., Sheridan, M. A., Marshall, P., & Nelson, C. A. (2010). Delayed maturation in brain electrical activity partially explains the association between early environmental deprivation and symptoms of attention-deficit/hyperactivity disorder. Biological Psychiatry, 68, 329336.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Sheridan, M. A., & Nelson, C. A. (2013). Adverse childhood experiences and brain development: Neurobiological mechanisms linking the social environment to psychiatric disorders [ebook]. Oxford: Oxford University Press.Google Scholar
Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., et al. (1996). Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress. Developmental Neuroscience, 18, 4972.CrossRefGoogle ScholarPubMed
Melo, A. I., Lovic, V., Gonzalez, A., Madden, M., Sinopoli, K., & Fleming, A. S. (2006). Maternal and littermate deprivation disrupts maternal behavior and social-learning of food preference in adulthood: Tactile stimulation, nest odor, and social rearing prevent these effects. Developmental Psychobiology, 48, 209219.CrossRefGoogle ScholarPubMed
Merz, E. C., & McCall, R. B. (2010). Behavior problems in children adopted from psychosocially depriving institutions. Journal of Abnormal Child Psychology, 38, 459470.CrossRefGoogle ScholarPubMed
Merz, E. C., & McCall, R. B. (2011). Parent ratings of executive functioning in children adopted from psychosocially depriving institutions. Journal of Child Psychology and Psychiatry, 52, 537546.CrossRefGoogle ScholarPubMed
Meyer, J. S., Novak, M. A., Bowman, R. E., & Harlow, H. F. (1975). Behavioral and hormonal effects of attachment object separation in surrogate-peer-reared and mother-reared infant rhesus monkeys. Developmental Psychobiology, 8, 425435.CrossRefGoogle ScholarPubMed
Mileva-Seitz, V., Kennedy, J., Atkinson, L., Steiner, M., Levitan, R., Matthews, S. G., et al. (2011). Serotonin transporter allelic variation in mothers predicts maternal sensitivity, behavior and attitudes toward 6-month-old infants. Genes, Brain, and Behavior, 10, 325333.CrossRefGoogle Scholar
Miller, F. J. (2009). The randomized controlled trial as a demonstration project: An ethical perspective. American Journal of Psychiatry, 166, 743745.CrossRefGoogle ScholarPubMed
Millum, J., & Emanuel, E. J. (2007). The ethics of international research with abandoned children. Science, 318, 18741875.CrossRefGoogle ScholarPubMed
Mirescu, C., Peters, J., & Gould, E. (2004). Early life experience alters response of adult neurogenesis to stress. Nature Neuroscience, 7, 841846.CrossRefGoogle ScholarPubMed
Mychasiuk, R., Ilnytskyy, S., Kovalchuk, O., Kolb, B., & Gibb, R. (2011). Intensity matters: Brain, behaviour and the epigenome of prenatally stressed rats. Neuroscience, 180, 105110.CrossRefGoogle ScholarPubMed
Nelson, C. A., Bloom, F. E., Cameron, J. L., Amaral, D., Dahl, R. E., & Pine, D. (2002). An integrative, multidisciplinary approach to the study of brain–behavior relations in the context of typical and atypical development. Development and Psychopathology, 14, 499520.CrossRefGoogle Scholar
Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A. T., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest Early Intervention Project. Science, 318, 19371940.CrossRefGoogle ScholarPubMed
Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Reviews Neuroscience, 7, 697709.CrossRefGoogle ScholarPubMed
Novakov, M., & Fleming, A. S. (2005). The effects of early rearing environment on the hormonal induction of maternal behavior in virgin rats. Hormones and Behavior, 48, 528536.CrossRefGoogle ScholarPubMed
O'Connor, T. G., & Cameron, J. L. (2006). Translating research findings on early experience to prevention: Animal and human evidence on early attachment relationships. American Journal of Preventive Medicine, 31, S175S181.CrossRefGoogle ScholarPubMed
O'Connor, T. G., Marvin, R. S., Rutter, M., Olrick, J. T., & Brittner, P. A. (2003). The English and Romanian Adoptees Study Team: Child–parent attachment following severe early institutional deprivation. Development and Psychopathology, 15, 1938.CrossRefGoogle Scholar
Parr, L. A., Winslow, J. T., & Davis, M. (2002). Rearing experience differentially affects somatic and cardiac startle responses in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 51, 859866.Google Scholar
Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377401.CrossRefGoogle ScholarPubMed
Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37, 5187.CrossRefGoogle ScholarPubMed
Plotsky, P. M., & Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic corticotrophin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Molecular Brain Research. 18, 195200.CrossRefGoogle ScholarPubMed
Plotsky, P. M., Thrivikraman, K. V., & Meaney, M. J. (1993). Central and feedback regulation of hypothalamic corticotropin-releasing factor secretion. Chichester: Wiley.Google ScholarPubMed
Pluess, M., & Belsky, J. (2011). Prenatal programming of postnatal plasticity? Development and Psychopathology, 23, 2938.CrossRefGoogle ScholarPubMed
Putignano, E., Lonetti, G., Cancedda, L., Ratto, G., Costa, M., Maffei, L., et al. (2007). Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron, 53, 747759.CrossRefGoogle ScholarPubMed
Quevedo, K., Johnson, A., Loman, M., Lafavor, T., & Gunnar, M. (2012). The confluence of adverse early experience and puberty on the cortisol awakening response. International Journal of Behavioral Development, 36, 1928.CrossRefGoogle ScholarPubMed
Robbins, T. W. (2000). Chemical neuromodulation of frontal-executive functions in humans and other animals. Experimental Brain Research, 133, 130138.CrossRefGoogle ScholarPubMed
Roma, P. G., Ruggiero, A. M., Schwandt, M. L., Higley, J. D., & Suomi, S. J. (2006). The kids are alright: Maternal behavioral interactions and stress reactivity in infants of differentially reared rhesus monkeys. Journal of Developmental Processes, 1, 103122.Google Scholar
Roy, P., Rutter, M., & Pickles, A. (2004). Institutional care: Associations between overactivity and lack of selectivity in social relationships. Journal of Child Psychology and Psychiatry, 45, 866873.CrossRefGoogle ScholarPubMed
Ruppenthal, G. C.., Ailing, G. L., Harlow, H. F., Sackett, G. P., & Suomi, S. J. (1976). A 10-year perspective of motherless-mother monkey behavior. Journal of Abnormal Psychology, 85, 341349.CrossRefGoogle ScholarPubMed
Rutter, M., Beckett, C., Castle, J., Colvert, E., Kreppner, J., Mehta, M., et al. (2007). Effects of profound early institutional deprivation: An overview of findings from a UK longitudinal study of Romanian adoptees. European Journal of Developmental Psychology, 4, 332350.CrossRefGoogle Scholar
Sabatini, M. J., Ebert, P., Lewis, D. A., Levitt, P., Cameron, J. L., & Mirnics, K. (2007). Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. Journal of Neuroscience, 27, 32953304.CrossRefGoogle ScholarPubMed
Sackett, G. P., Bowman, R. E., Meyer, J. S., Tripp, R. L., & Grady, S. S. (1973). Adrenocortical and behavioral reactions by differentially raised rhesus monkeys. Physiological Psychology, 1, 209212.CrossRefGoogle Scholar
Sale, A., Berardi, N., Spolidoro, M., Baroncelli, L., & Maffei, L. (2010). GABAergic inhibition in visual cortical plasticity. Frontiers in Cellular Neuroscience, 4, 10.Google ScholarPubMed
Sanchez, M. M. (2006). The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Behavior, 50, 623631.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419449.CrossRefGoogle ScholarPubMed
Schanberg, S. M., Evoniuk, G., & Kuhn, C. M. (1984). Tactile and nutritional aspects of maternal care: Specific regulators of neuroendocrine function and cellular development. Proceedings of the Society for Experimental Biology and Medicine, 175, 135146.CrossRefGoogle ScholarPubMed
Schanberg, S. M., & Field, T. M. (2003). PKC alpha mediates maternal touch regulation of growth-related gene expression in infant rats. Neurospsychopharmacology, 28, 10301036.Google ScholarPubMed
Shannon, C., Champoux, M., & Suomi, S. J. (1998). Rearing condition and plasma cortisol in rhesus monkey infants. American Journal of Primatology, 46, 311321.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Sheridan, M. A., McLaughlin, K., Fox, N., Zeanah, C., Chirita, A., & Nelson, C. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences, 109, 1292712932.CrossRefGoogle ScholarPubMed
Sisk, C. L., & Zehr, J. L. (2005). Review: Pubertal hormones organize the adolescent brain and behavior. Frontiers in Neuroendocrinology, 26, 163174.CrossRefGoogle ScholarPubMed
Smith, M. A., Kim, S. Y., van Oers, H. J., & Levine, S. (1997). Maternal deprivation and stress induce immediate early genes in the infant rat brain. Endocrinology, 138, 46224628.CrossRefGoogle ScholarPubMed
Smith, P. J., Need, A. C., Cirulli, E. T., Chiba-Falek, O., & Attix, D. K. (2013). A comparison of the Cambridge Automated Neuropsychological Test Battery (CANTAB) with “traditional” neuropsychological testing instruments. Journal of Clinical and Experimental Neuropsychology, 35, 319328.CrossRefGoogle ScholarPubMed
Sonuga-Barke, E., Beckett, C., Kreppner, J., Castle, J., Colvert, E., Stevens, S. E., et al. (2008). Is sub-nutrition necessary for poor outcome following early institutional deprivation? Developmental Medicine and Child Neurology, 50, 604671.CrossRefGoogle ScholarPubMed
Spangler, G. (1991). The emergence of adrenocortical circadian function in newborns and infants and its relationship to sleep, feeding and maternal adrenocortical activity. Early Human Development, 25, 197208.CrossRefGoogle ScholarPubMed
Spinelli, S., Chefer, S., Suomi, S. J., Dee Higley, J., Barr, C. S., & Stein, E. (2009). Early-life stress induces long-term morphologic changes in primate brain. Archives of General Psychiatry, 66, 658665.CrossRefGoogle ScholarPubMed
Spitz, R. A. (1945). Hospitalism: An enquiry into the genesis of psychiatric conditions in early childhood. Psychoanalytic Study of the Child, 1, 5374.CrossRefGoogle Scholar
Spitz, R. A. (1946). Anaclitic depression. Psychoanalytic Study of the Child, 2, 313342.CrossRefGoogle ScholarPubMed
St. Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59, 745759.CrossRefGoogle ScholarPubMed
Stevens, S. E., Kumsta, R., Kreppner, J. M., Brookes, K. J., Rutter, M., & Sonuga-Barke, E. (2009). Dopamine transporter gene polymorphism moderates the effects of severe deprivation on ADHD symptoms: Developmental continuities in gene–environment interplay. American Journal of Medical Genetics, 150B, 753761.Google ScholarPubMed
Stevens, S. E., Sonuga-Barke, E., Kreppner, J., Beckett, C., Castle, J., Colvert, E., et al. (2008). Inattention/overactivity following early severe institutional deprivation: Presentation and associations in early adolescence. Journal of Abnormal Child Psychology, 36, 385389.CrossRefGoogle ScholarPubMed
Sundstrom, J. B., Mao, H., Santoianni, R., Villinger, F., Little, D. M., Huynh, T. T., et al. (2004). Magnetic resonance imaging of activated proliferating rhesus macaque T cells labeled with superparamagnetic monocrystalline iron oxide nanoparticles. Journal of Acquired Immune Deficiency Syndromes, 35, 921.CrossRefGoogle ScholarPubMed
Suomi, S. J. (1982). Abnormal behavior and primate models of psychopathology. In Forbes, J. L. & King, J. E. (Eds.), Primate behavior. New York: Academic Press.Google Scholar
Suomi, S. J. (2011). Risk, resilience, and gene–environment interplay in primates. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 20, 289297.Google ScholarPubMed
Suomi, S. J., & Ripp, C. (1983). A history of motherless monkey mothering at the University of Wisconsin Primate Laboratory. In Reite, M. & Caine, N. (Eds.), Child abuse: The non-human primate data (pp. 4978). New York: A. R. Liss.Google Scholar
Surmeier, D. J. (2007). Dopamine and working memory mechanisms in prefrontal cortex. Journal of Physiology, 581(Part 3), 885.CrossRefGoogle ScholarPubMed
Teffer, K., & Semendeferi, K. (2012). Human prefrontal cortex: Evolution, development, and pathology. Progress in Brain Research, 195, 191218.CrossRefGoogle ScholarPubMed
Teilmann, G., Pedersen, C. B., Skakkebæk, N. E., & Jensen, T. K. (2006). Increased risk of precocious puberty in internationally adopted children in denmark. Pediatrics, 118, e391e399CrossRefGoogle ScholarPubMed
Theall, K., McKasson, S., Mabile, E., Dunaway, L., & Drury, S. S. (2013). Early hits and long-term consequences: Tracking the lasting impact of prenatal smoke exposure on telomere length in children. American Journal of Public Health. Advance online publication.CrossRefGoogle Scholar
Tibu, F., Humphreys, K. L., Fox, N. A., Nelson, C. A., & Zeanah, C. H. (2014). Psychopathology in young children in two types of foster care following institutional rearing. Infant Mental Health Journal. Advance online publication.CrossRefGoogle Scholar
Tieman, W., van der Ende, J., & Verhulst, F. C. (2005). Psychiatric disorders in young adult intercountry adoptees: An epidemiological study. American Journal of Psychiatry, 162, 592598.CrossRefGoogle ScholarPubMed
Torgersen, J., Flaatten, H., Engelsen, B. A., & Gramstad, A. (2012). Clinical validation of Cambridge Neuropsychological Test Automated Battery in a Norwegian epilepsy population. Journal of Behavioral and Brain Science, 2, 108116.CrossRefGoogle Scholar
Tottenham, N. (2012). Risk and developmental heterogeneity in previously-institutionalized children. Journal of Adolescent Health, 51(Suppl. 2), S29S33.CrossRefGoogle ScholarPubMed
Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., et al. (2010). Prolonged institutional rearing is associated with atypically larger amygdala volume and difficulties in emotion regulation. Developmental Science, 13, 4661.CrossRefGoogle ScholarPubMed
Trickett, P. K., & Putnam, F. W. (1998). Developmental consequences of child sexual abuse. In Trickett, P. K. & Schellenbach, C. J. (Eds.), Violence against children in the family and the community (pp. 3956). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
van den Driesz, L., Juffer, F., van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2010). Infants' physical and cognitive development after international adoption from foster care or institutions in China. Journal of Developmental and Behavioral Pediatrics, 31, 144150.CrossRefGoogle Scholar
van der Vegt, E. J., van der Ende, J., Ferdinand, R. F., Verhulst, F. C., & Tiemeier, H. (2009). Early childhood adversities and trajectories of psychiatric problems in adoptees: Evidence for long lasting effects. Journal of Abnormal Child Psychology, 37, 239249.CrossRefGoogle ScholarPubMed
Verhulst, F. C., Althaus, M., & Versluis-den Bieman, H. J. (1990). Problem behavior in international adoptees: I. An epidemiological study. Journal of the American Academy of Child & Adolescent Psychiatry, 29, 94103.CrossRefGoogle ScholarPubMed
Vermeer, H., Hendriks-Stegeman, B. I., van der Berg, B., van Buul-Offers, S. C., & Jansen, M. (2003). Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: A potential marker for glucocorticoid sensitivity, potentcy, and bioavailability. Journal of Clinical Endocrinology and Metabolism, 88, 277284.CrossRefGoogle Scholar
Viau, V., Sharma, S., Plotsky, P. M., & Meaney, M. J. (1993). Increased plasma ACTH responses to stress in nonhandled compared with handled rats require basal levels of corticosterone and are associated with increased levels of ACTH secretagogues in the median eminence. Journal of Neuroscience, 13, 10971105.CrossRefGoogle ScholarPubMed
Vintan, M. A., Palade, S., Cristea, A., Benga, I., & Muresanu, D. F. (2012). A neuropsychological assessment, using computerized battery tests (CANTAB), in children with benign rolandic epilepsy before AED therapy. Journal of Medicine and Life, 5, 114119.Google ScholarPubMed
Volkow, N. D., Wang, G.-J., Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108, 16.CrossRefGoogle ScholarPubMed
Wang, B.-S., Feng, L., Liu, M., Liu, X., & Cang, J. (2013). Environmental enrichment rescues binocular matching of orientation preference in mice that have a precocious critical period. Neuron, 80, 198209.CrossRefGoogle ScholarPubMed
Ward, G., Xing, H. C., Carnide, N., Slivchak, J., & Wainwright, P. (2004). Adrenocortical response to stress in fasted and unfasted artificially reared 12-day-old rat pups. Developmental Psychobiology, 45, 245250.CrossRefGoogle ScholarPubMed
Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience and Biobehavioral Reviews, 32, 10731086.CrossRefGoogle ScholarPubMed
Welsh, M. C., Pennington, B. F., & Groissier, D. B. (1991). A normative-developmental study of executive functions: A window on prefrontal function in children. Developmental Neuropsychology, 7, 131149.CrossRefGoogle Scholar
Wiesel, T. N., & Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology, 28, 10291040.CrossRefGoogle ScholarPubMed
Wiik, K. L., Loman, M. M., Van Ryzin, M. J., Armstrong, J. A., Essex, M. J., Pollak, S. D., et al. (2011). Behavioral and emotional symptoms of post-institutionalized children in middle childhood. Journal of Child Psychology and Psychiatry and Allied Disciplines, 52, 5663.CrossRefGoogle ScholarPubMed
Winslow, J. T. (2005). Neuropeptides and non-human primate social deficits associated with pathogenic rearing experience. International Journal of Developmental Neuroscience, 23, 245251.CrossRefGoogle ScholarPubMed
Wismer Fries, A. B., Shirtcliff, E. A., Pollak, S. D., & Fries, A. B. (2008). Neuroendocrine dysregulation following early social deprivation in children. Developmental Psychobiology, 50, 588599.CrossRefGoogle Scholar
Zeanah, C. H., Egger, H. L., Smyke, A. T., Nelson, C. A., Fox, N. A., Marshall, P. J., et al. (2009). Institutional rearing and psychiatric disorders in Romanian preschool children. American Journal of Psychiatry, 166, 777785.CrossRefGoogle ScholarPubMed
Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2012). The Bucharest Early Intervention Project: Case study in the ethics of mental health research. Journal of Nervous and Mental Diseases, 200, 243247.CrossRefGoogle ScholarPubMed
Zeanah, C. H., Gunnar, M. R., McCall, R. B., Kreppner, J. M., & Fox, N. A. (2011). Sensitive periods. Monographs of the Society for Research in Child Development, 76, 147162.CrossRefGoogle ScholarPubMed
Zeanah, C. H., Koga, S. K., Simion, B., Stanescu, A., Tabacaru, C., Fox, N. A., et al. (2006). Ethical dimensions of the BEIP: Response to commentary. Infant Mental Health Journal, 27, 581583.CrossRefGoogle ScholarPubMed
Zeanah, C. H., Larrieu, J. A., Heller, S. S., Valliere, J., Hinshaw-Fuselier, S., Aoki, Y., et al. (2001). Evaluation of a preventive intervention for maltreated infants and toddlers in foster care. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 214221.CrossRefGoogle ScholarPubMed
Zeanah, C. H., Nelson, C. B. A., Fox, N. A., Smyke, A. T., Marshall, P. J., Parker, S. W., et al. (2003). Designing research to study the effects of institutionalization on brain and behavioral development: The Bucharest Early Intervention Project. Development and Psychopathology, 15, 885907.CrossRefGoogle Scholar
Zeanah, C. H., Smyke, A. T., Koga, S. F. M., Carlson, E., & the Bucharest Early Intervention Project Core Group. (2005). Attachment in institutionalized and community children in Romania. Child Development, 76, 10151028.CrossRefGoogle ScholarPubMed
Zhang, T.-Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439466.CrossRefGoogle ScholarPubMed