Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T16:43:59.579Z Has data issue: false hasContentIssue false

Emotional insecurity as a mediator of the moderating role of dopamine genes in the association between interparental conflict and youth externalizing problems

Published online by Cambridge University Press:  06 May 2019

Patrick T. Davies*
Affiliation:
Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY, USA
Joanna K. Pearson
Affiliation:
Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY, USA
Dante Cicchetti
Affiliation:
Institute of Child Development and Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
Meredith J. Martin
Affiliation:
Department of Educational Psychology, University of Nebraska–Lincoln, Lincoln, NE, USA
E. Mark Cummings
Affiliation:
Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
*
Author for Correspondence: Patrick Davies, Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY 14627; E-mail: patrick.davies@rochester.edu.

Abstract

This study tested whether the association between interparental conflict and adolescent externalizing symptoms was moderated by a polygenic composite indexing low dopamine activity (i.e., 7-repeat allele of DRD4; Val alleles of COMT; 10-repeat variants of DAT1) in a sample of seventh-grade adolescents (Mean age = 13.0 years) and their parents. Using a longitudinal, autoregressive design, observational assessments of interparental conflict at Wave 1 predicted increases in a multi-informant measurement of youth externalizing symptoms 2 years later at Wave 3 only for children who were high on the hypodopaminergic composite. Moderation was expressed in a “for better” or “for worse” form hypothesized by differential susceptibility theory. Thus, children high on the dopaminergic composite experienced more externalizing problems than their peers when faced with more destructive conflicts but also fewer externalizing problems when exposed to more constructive interparental conflicts. Mediated moderation findings indicated that adolescent reports of their emotional insecurity in the interparental relationship partially explained the greater genetic susceptibility experienced by these children. More specifically, the dopamine composite moderated the association between Wave 1 interparental conflict and emotional insecurity 1 year later at Wave 2 in the same “for better” or “for worse” pattern as externalizing symptoms. Adolescent insecurity at Wave 2, in turn, predicted their greater externalizing symptoms 1 year later at Wave 3. Post hoc analyses further revealed that the 7-repeat allele of the dopamine receptor D4 (DRD4) gene was the primary source of plasticity in the polygenic composite. Results are discussed as to how they advance process-oriented Gene x Environment models of emotion regulation.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1991). Integrative guide for the 1991 CBCL/4-18, YSR, and TRF profiles. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Achenbach, T. M., Dumenci, L., & Rescorla, L. A. (2003). DSM-oriented and empirically based approaches to constructing scales from the same item pools. Journal of Clinical Child and Adolescent Psychology, 32, 328340. doi:10.1207/S15374424JCCP3203_02Google Scholar
Arbuckle, J. L. (2017). Amos user's guide: Version 25. Chicago, IL: SmallWaters Corporation.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952. doi:10.1017/S0954579410000635Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene × environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381409. doi:10.1146/annurev-psych-010814-015407Google Scholar
Barr, C. L., Xu, C., Kroft, J., Feng, Y., Wigg, K., Zai, G., … Nöthen, M. M. (2001). Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder. Biological Psychiatry, 49, 333339. doi:10.1016/S0006-3223(00)01053-2Google Scholar
Beauchaine, T. P., & Gatzke-Kopp, L. M. (2012). Instantiating the multiple levels of analysis perspective in a program of study on externalizing behavior. Development and Psychopathology, 24, 10031018. doi:10.1017/s0954579412000508Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184. doi:10.1016/j.biopsycho.2005.08.008Google Scholar
Beauchaine, T. P., Neuhaus, E., Zalewski, M., Crowell, S. E., & Potapova, N. (2011). The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation. Development and Psychopathology, 23, 975999. doi:10.1017/s0954579411000459Google Scholar
Beauchaine, T. P., Zisner, A. R., & Sauder, C. L. (2017). Trait impulsivity and the externalizing spectrum. Annual Review of Clinical Psychology, 13, 343368. doi:10.1146/annurev-clinpsy-021815-093253Google Scholar
Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-regulation. Journal of Child Psychology and Psychiatry, 52, 619626. doi:10.1111/j.1469-7610.2010.02327.xGoogle Scholar
Belsky, J., Newman, D. A., Widaman, K. F., Rodkin, P., Pluess, M., Fraley, R. C., … Roisman, G. I. (2015). Differential susceptibility to effects of maternal sensitivity? A study of candidate plasticity genes. Development and Psychopathology, 27, 725746. doi:10.1017/s0954579414001497Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908. doi:10.1037/a0017376Google Scholar
Belsky, J., & Pluess, M. (2016). Differential susceptibility to environmental influences. In Cicchetti, D. (Ed.), Developmental psychopathology: Vol. 2. Developmental neuroscience (3rd ed., pp. 59106). Hoboken, NJ: Wiley.Google Scholar
Bilder, R. M., Volavka, J., Lachman, H. M., & Grace, A. A. (2004). The catechol-O-methyltransferase polymorphism: Relations to the tonic–phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29, 19431961. doi:10.1038/sj.npp.1300542Google Scholar
Boardman, J. D., Menard, S., Roettger, M. E., Knight, K. E., Boutwell, B. B., & Smolen, A. (2014). Genes in the dopaminergic system and delinquent behaviors across the life course: The role of social controls and risks. Criminal Justice and Behavior, 41, 713731. doi:10.1177/0093854813514227Google Scholar
Boyce, W. T. (2016). Differential susceptibility of the developing brain to contextual adversity and stress. Neuropsychopharmacology, 41, 142162. doi:10.1038/npp.2015.294Google Scholar
Camara, E., Rodriguez-Fornells, A., & Münte, T. F. (2010). Microstructural brain differences predict functional hemodynamic responses in a reward processing task. Journal of Neuroscience, 30, 1139811402.Google Scholar
Carver, C. S., LeMoult, J., Johnson, S. L., & Joormann, J. (2014). Gene effects and G × E interactions in the differential prediction of three aspects of impulsiveness. Social Psychological and Personality Science, 5, 730739. doi:10.1177/1948550614527116Google Scholar
Cicchetti, D., & Toth, S. L. (2009). The past achievements and future promises of developmental psychopathology: The coming of age of a discipline. Journal of Child Psychology and Psychiatry, 50, 1625. doi:10.1111/j.1469-7610.2008.01979.xGoogle Scholar
Cole, D. A., Gondoli, D. M., & Peeke, L. G. (1998). Structure and validity of parent and teacher perceptions of children's competence: A multitrait–multimethod–multigroup investigation. Psychological Assessment, 10, 241249. doi:10.1037/1040-3590.10.3.241Google Scholar
Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558577. doi:10.1037/0021-843x.112.4.558Google Scholar
Cummings, E. M., & Miller-Graff, L. E. (2015). Emotional security theory: An emerging theoretical model for youths’ psychological and physiological responses across multiple developmental contexts. Current Directions in Psychological Science, 24, 208213. doi:0.1177/0963721414561510Google Scholar
Cummings, E. M., Schermerhorn, A. C., Davies, P. T., Goeke-Morey, M. C., & Cummings, J. S. (2006). Interparental discord and child adjustment: Prospective investigations of emotional security as an explanatory mechanism. Child Development, 77, 132152. doi:10.1111/j.1467-8624.2006.00861.xGoogle Scholar
Davies, P., Cicchetti, D., & Hentges, R. F. (2015). Maternal unresponsiveness and child disruptive problems: The interplay of uninhibited temperament and dopamine transporter genes. Child Development, 86, 6379. doi:10.1111/cdev.12281Google Scholar
Davies, P. D., Martin, M. J., & Sturge-Apple, M. L. (2016). Emotional security theory and developmental psychopathology. In Cicchetti, D. (Ed.), Developmental psychopathology: Theory and method (3rd ed., pp. 199264). Hoboken, NJ: Wiley.Google Scholar
Davies, P. T., & Cummings, E. M. (1994). Marital conflict and child adjustment: An emotional security hypothesis. Psychological Bulletin, 116, 387411. doi:10.1037//0033-2909.116.3.387Google Scholar
Davies, P. T., Forman, E. M., Rasi, J. A., & Stevens, K. I. (2002). Assessing children's emotional security in the interparental relationship: The security in the interparental subsystem scales. Child Development, 73, 544562. doi:10.1111/1467-8624.00423Google Scholar
Davies, P. T., Hentges, R. F., Coe, J. L., Martin, M. J., Sturge-Apple, M. L., & Cummings, E. M. (2016). The multiple faces of interparental conflict: Implications for cascades of children's insecurity and externalizing problems. Journal of Abnormal Psychology, 125, 664678. doi:10.1037/abn0000170Google Scholar
Davies, P. T., Sturge-Apple, M. L., Bascoe, S. M., & Cummings, E. M. (2014). The legacy of early insecurity histories in shaping adolescent adaptation to interparental conflict. Child Development, 85, 338354. doi:10.1111/cdev.12119Google Scholar
Davies, P. T., Sturge-Apple, M. L., & Martin, M. J. (2013). Family discord and child health: An emotional security formulation. In Landale, N. S., McHale, S. M., & Booth, A. (Eds.), Families and child health (pp. 4574). New York: Springer.Google Scholar
Del Giudice, M. (2017). Statistical tests of differential susceptibility: Performance, limitations, and improvements. Development and Psychopathology, 29, 12671278. doi:10.1017/s0954579416001292Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2013). Making sense of stress: An evolutionary–developmental framework. In Laviola, G. & Macrì, S. (Eds.), Adaptive and maladaptive aspects of developmental stress: Current topics in neurotoxicity (pp. 2343). New York: Springer.Google Scholar
Dimitrov, D. M. (2010). Testing for factorial invariance in the context of construct validation. Measurement and Evaluation in Counseling and Development, 43, 121149. doi:10.1177/0748175610373459Google Scholar
Du Rocher Schudlich, T. D., Papp, L. M., & Cummings, E. M. (2004). Relations of husbands' and wives' dysphoria to marital conflict resolution strategies. Journal of Family Psychology, 18, 171183. doi:10.1037/0893-3200.18.1.171Google Scholar
El-Sheikh, M., & Erath, S. A. (2011). Family conflict, autonomic nervous system functioning, and child adaptation: State of the science and future directions. Development and Psychopathology, 23, 703721. doi:10.1017/S0954579411000034Google Scholar
Felten, A., Montag, C., Markett, S., Walter, N. T., & Reuter, M. (2011). Genetically determined dopamine availability predicts disposition for depression. Brain and Behavior, 1, 109118. doi:10.1002/brb3.20Google Scholar
Forbes, E. E., Phillips, M. L., Ryan, N. D., & Dahl, R. E. (2011). Neural systems of threat processing in adolescents: Role of pubertal maturation and relation to measures of negative affect. Developmental Neuropsychology, 36, 429452. doi:10.1080/87565641.2010.550178Google Scholar
Fosco, G. M., & Grych, J. H. (2010). Adolescent triangulation into parental conflicts: Longitudinal implications for appraisals and adolescent–parent relations. Journal of Marriage and Family, 72, 254266. doi:10.1111/j.1741-3737.2010.00697.xGoogle Scholar
Frigerio, A., Ceppi, E., Rusconi, M., Giorda, R., Raggi, M. E., & Fearon, P. (2009). The role played by the interaction between genetic factors and attachment in the stress response in infancy. Journal of Child Psychology and Psychiatry, 50, 15131522. doi:10.1111/j.1469-7610.2009.02126.xGoogle Scholar
Garcia, M., Barcelo, F., Clemente, I. C., & Escera, C. (2010). The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. European Journal of Neuroscience, 31, 754760. doi:10.1016/j.neuropsychologia.2010.01.018Google Scholar
Gatzke-Kopp, L. M. (2011). The canary in the coalmine: The sensitivity of mesolimbic dopamine to environmental adversity during development. Neuroscience & Biobehavioral Reviews, 35, 794803. doi:10.1016/j.neubiorev.2010.09.013Google Scholar
Gehricke, J. G., Swanson, J. M., Duong, S., Nguyen, J., Wigal, T. L., Fallon, J., … Moyzis, R. K. (2015). Increased brain activity to unpleasant stimuli in individuals with the 7R allele of the DRD4 gene. Psychiatry Research: Neuroimaging, 231, 5863. doi:10.1016/j.pscychresns.2014.10.021Google Scholar
Goodman, R. (1999). The extended version of the Strengths and Difficulties Questionnaire as a guide to child psychiatric caseness and consequent burden. Journal of Child Psychology and Psychaitry, 40, 791799. doi:10.1111/1469-7610.00494Google Scholar
Goodman, R., & Scott, S. (1999). Comparing the Strengths and Difficulties Questionnaire and the Child Behavior Checklist: Is small beautiful? Journal of Abnormal Child Psychology, 27, 1724.Google Scholar
Haeffel, G. J., Getchell, M., Koposov, R. A., Yrigollen, C. M., De Young, C. G., Klinteberg, B. A., … Grigorenko, E. L. (2008). Association between polymorphisms in the dopamine transporter gene and depression: Evidence for a gene-environment interaction in a sample of juvenile detainees. Psychological Science, 19, 6269. doi:10.1111/j.1467-9280.2008.02047.xGoogle Scholar
Harold, G. T., Elam, K. K., Lewis, G., Rice, F., & Thapar, A. (2012). Interparental conflict, parent psychopathology, hostile parenting, and child antisocial behavior: Examining the role of maternal versus paternal influences using a novel genetically sensitive research design. Development and Psychopathology, 24, 12831295. doi:10.1017/s0954579412000703Google Scholar
Harold, G. T., & Sellers, R. (2018). Annual Research Review: Interparental conflict and youth psychopathology: An evidence review and practice focused update. Journal of Child Psychology and Psychiatry, 59, 374402. doi:10.1111/jcpp.12893Google Scholar
Harter, S. (1988). Self-perception profile for adolescents. Denver, CO: University of Denver Press.Google Scholar
Hygen, B. W., Belsky, J., Stenseng, F., Lydersen, S., Guzey, I. C., & Wichstrøm, L. (2015). Child exposure to serious life events, COMT, and aggression: Testing differential susceptibility theory. Developmental Psychology, 51, 10981104. doi:10.1037/dev0000020Google Scholar
Janssens, A., van Den Noortgate, W., Goossens, L., Verschueren, K., Colpin, H., De Laet, S., … & van Leeuwen, K. (2015). Externalizing problem behavior in adolescence: Dopaminergic genes in interaction with peer acceptance and rejection. Journal of Youth and Adolescence, 44, 14411456. doi:10.1007/s10964-015-0304-2Google Scholar
Jouriles, E. N., Rosenfield, D., McDonald, R., & Mueller, V. (2014). Child involvement in interparental conflict and child adjustment problems: A longitudinal study of violent families. Journal of Abnormal Child Psychology, 42, 693704. doi:10.1007/s10802-013-9821-1Google Scholar
Laakso, A., Wallius, E., Kajander, J., Bergman, J., Eskola, O., Solin, O., … Hietala, J. (2003). Personality traits and striatal dopamine synthesis capacity in healthy subjects. American Journal of Psychiatry, 160, 904910. doi:10.1176/appi.ajp.160.5.904Google Scholar
Lackner, C., Sabbagh, M. A., Hallinan, E., Liu, X., & Holden, J. J. (2012). Dopamine receptor D4 gene variation predicts preschoolers’ developing theory of mind. Developmental Science, 15, 272280. doi:10.1111/j.1467-7687.2011.01124.xGoogle Scholar
Levitan, R. D., Masellis, M., Lam, R. W., Kaplan, A. S., Davis, C., Tharmalingam, S., … Kennedy, J. L. (2006). A birth-season/DRD4 gene interaction predicts weight gain and obesity in women with seasonal affective disorder: A seasonal thrifty phenotype hypothesis. Neuropsychopharmacology, 31, 24982503. doi:10.1038/sj.npp.1301121Google Scholar
Little, R. J. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83, 11981202. doi:10.2307/2290157Google Scholar
Malik, N. M., & Lindahl, K. M. (2004). System for Coding Interactions in Dyads (SCID). In Couple observational coding systems (pp. 173188). London: Routledge.Google Scholar
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12, 2344. doi:10.1037/1082-989X.12.1.23Google Scholar
McGeary, J. (2009). The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: A review. Pharmacology Biochemistry and Behavior, 93, 222229. doi:10.1016/j.pbb.2009.03.010Google Scholar
McLauughlin, K. A., Hatzenbuehler, M. L., Mennin, D. S., & Nolen-Hoeksema, S. (2011). Emotion dysregulation and adolescent psychopathology: A prospective study. Behaviour Research and Therapy, 49, 544554. doi:10.1016/j.brat.2011.06.003Google Scholar
Mill, J., Asherson, P., Browes, C., D'Souza, U., & Craig, I. (2002). Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: Evidence from brain and lymphocytes using quantitative RT-PCR. American Journal of Medical Genetics, 114, 975979. doi:10.1002/ajmg.b.10948Google Scholar
Moore, S. R., & Depue, R. A. (2016). Neurobehavioral foundation of environmental reactivity. Psychological Bulletin, 142, 107164. doi:10.1037/bul0000028Google Scholar
Muda, R., Kicia, M., Michalak-Wojnowska, M., Ginszt, M., Filip, A., Gawda, P., & Majcher, P. (2018). The dopamine receptor D4 gene (DRD4) and financial risk-taking: Stimulating and instrumental risk-taking propensity and motivation to engage in investment activity. Frontiers in Behavioral Neuroscience, 12, 34.Google Scholar
Nobile, M., Rusconi, M., Bellina, M., Marino, C., Giorda, R., Carlet, O., … Battaglia, M. (2010). COMT Val158Met polymorphism and socioeconomic status interact to predict attention deficit/hyperactivity problems in children aged 10–14. European Child & Adolescent Psychiatry, 19, 549557. doi:10.1007/s00787-009-0080-1Google Scholar
Obradović, J., Bush, N. R., & Boyce, W. T. (2011). The interactive effect of marital conflict and stress reactivity on externalizing and internalizing symptoms: The role of laboratory stressors. Development and Psychopathology, 23, 101114. doi:10.1017/S0954579410000672Google Scholar
Pauli-Pott, U., & Beckmann, D. (2007). On the association of interparental conflict with developing behavioral inhibition and behavior problems in early childhood. Journal of Family Psychology, 21, 529532. doi:10.1037/0893-3200.21.3.529Google Scholar
Pluess, M. (2017). Vantage sensitivity: Environmental sensitivity to positive experiences as a function of genetic differences. Journal of Personality, 85, 3850. doi:10.1111/jopy.12218Google Scholar
Richards, J. S., Vásquez, A. A., Von Rhein, D., Van der Meer, D., Franke, B., Hoekstra, P. J., … Hartman, C. A. (2016). Adolescent behavioral and neural reward sensitivity: A test of the differential susceptibility theory. Translational Psychiatry, 6, e771. doi:10.1038/tp.2016.37Google Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409. doi:10.1017/s0954579412000065Google Scholar
Rommelse, N. N., Altink, M. E., Arias-Vásquez, A., Buschgens, C. J., Fliers, E., Faraone, S. V., … Oosterlaan, J. (2008). A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147, 15361546. doi:10.1002/ajmg.b.30848Google Scholar
Salamone, J. D., Correa, M., Farrar, A. M., Nunes, E. J., & Pardo, M. (2009). Dopamine, behavioral economics, and effort. Frontiers in Behavioral Neuroscience, 3, 13. doi:10.3389/neuro.08.013.2009Google Scholar
Schlomer, G. L., Bauman, S., & Card, N. A. (2010). Best practices for missing data management in counseling psychology. Journal of Counseling Psychology, 57, 110. doi:10.1037/a0018082Google Scholar
Schlomer, G. L., Cleveland, H. H., Vandenbergh, D. J., Feinberg, M. E., Neiderhiser, J. M., Greenberg, M. T., … Redmond, C. (2015). Developmental differences in early adolescent aggression: A gene × environment × intervention analysis. Journal of Youth and Adolescence, 44, 581597. doi:10.1007/s10964-014-0198-4Google Scholar
Schlomer, G. L., Fosco, G. M., Cleveland, H. H., Vandenbergh, D. J., & Feinberg, M. E. (2015). Interparental relationship sensitivity leads to adolescent internalizing problems: Different genotypes, different pathways. Journal of Marriage and Family, 77, 329343. doi:10.1111/jomf.12168Google Scholar
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 118. doi:10.1016/j.dcn.2015.12.009Google Scholar
Schwab-Reese, L. M., Parker, E. A., & Peek-Asa, C. (2017). Interactions of adolescent social experiences and dopamine genes to predict physical intimate partner violence perpetration. PLoS ONE, 12, e0172840. doi:10.1371/journal.pone.0172840Google Scholar
Schwartz, S. J., Des Rosiers, S., Huang, S., Zamboanga, B. L., Unger, J. B., Knight, G. P., … Szapocznik, J. (2013). Developmental trajectories of acculturation in Hispanic adolescents: Associations with family functioning and adolescent risk behavior. Child Development, 84, 13551372. doi:10.1111/cdev.12047Google Scholar
Smillie, L. D., & Wacker, J. (2014). Dopaminergic foundations of personality and individual differences. Frontiers in Human Neuroscience, 8, 874876. doi:10.3389/fnhum.2014.00874Google Scholar
Smith, T. F. (2010). Meta-analysis of the heterogeneity in association of DRD4 7-repeat allele and AD/HD: Stronger association with AD/HD combined type. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153, 11891199. doi:10.1002/ajmg.b.31090Google Scholar
Sonuga-Barke, E. J., Oades, R. D., Psychogiou, L., Chen, W., Franke, B., Buitelaar, J., … Miranda, A. (2009). Dopamine and serotonin transporter genotypes moderate sensitivity to maternal expressed emotion: The case of conduct and emotional problems in attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 50, 10521063. doi:10.1111/j.1469-7610.2009.02095.xGoogle Scholar
Tielbeek, J. J., Johansson, A., Polderman, T. J., Rautiainen, M. R., Jansen, P., Taylor, M., … Viding, E. (2017). Genome-wide association studies of a broad spectrum of antisocial behavior. JAMA Psychiatry, 74, 12421250. doi:10.1001/jamapsychiatry.2017.3069Google Scholar
Turic, D., Swanson, J., & Sonuga-Barke, E. (2010). DRD4 and DAT1 in ADHD: Functional neurobiology to pharmacogenetics. Pharmacogenomics and Personalized Medicine, 3, 6178. doi:10.2147/pgpm.s6800Google Scholar
Vandenbergh, D. J., Persico, A. M., Hawkins, A. L., Griffin, C. A., Li, X., Jabs, E. W., & Uhl, G. R. (1992). Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics, 14, 11041106. doi:10.1016/S0888-7543(05)80138-7Google Scholar
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2006). DRD4 7-repeat polymorphism moderates the association between maternal unresolved loss or trauma and infant disorganization. Attachment & Human Development, 8, 291307. doi:10.1080/14616730601048159Google Scholar
van Leeuwen, K., Janssens, A., van Assche, E., van Den Noortgate, W., Verschueren, K., Colpin, H., … Goossens, L. (2015). Gene-parenting interactions predicting adolescent externalizing behavior: Single gene and genetic pathway analyses. Paper presented at the biannual meeting of the International Society for Research in Child and Adolescent Psychopathology Scientific, Portland, Oregon, May 8–11.doi:10.1111/jora.12271Google Scholar
Vu, N. L., Jouriles, E. N., McDonald, R., & Rosenfield, D. (2016). Children's exposure to intimate partner violence: A meta-analysis of longitudinal associations with child adjustment problems. Clinical Psychology Review, 46, 2533. doi:10.1016/j.cpr.2016.04.003Google Scholar
Weeland, J., Overbeek, G., de Castro, B. O., & Matthys, W. (2015). Underlying mechanisms of gene–environment interactions in externalizing behavior: A systematic review and search for theoretical mechanisms. Clinical Child and Family Psychology Review, 18, 413442. doi:10.1007/s10567-015-0196-4Google Scholar