Hostname: page-component-797576ffbb-k7d4m Total loading time: 0 Render date: 2023-12-06T02:32:14.968Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Is low cognitive functioning a predictor or consequence of major depressive disorder? A test in two longitudinal birth cohorts

Published online by Cambridge University Press:  16 November 2017

Jonathan D. Schaefer*
Duke University
Matthew A. Scult
Duke University
Avshalom Caspi
Duke University King's College, London
Louise Arseneault
King's College, London
Daniel W. Belsky
Duke University Duke University School of Medicine
Ahmad R. Hariri
Duke University
Honalee Harrington
Duke University
Renate Houts
Duke University
Sandhya Ramrakha
University of Otago
Richie Poulton
University of Otago
Terrie E. Moffitt
Duke University King's College, London
Address correspondence and reprint requests to: Jonathan D. Schaefer, Department of Psychology and Neuroscience, Duke University, Durham, NC 27708; E-mail:


Cognitive impairment has been identified as an important aspect of major depressive disorder (MDD). We tested two theories regarding the association between MDD and cognitive functioning using data from longitudinal cohort studies. One theory, the cognitive reserve hypothesis, suggests that higher cognitive ability in childhood decreases risk of later MDD. The second, the scarring hypothesis, instead suggests that MDD leads to persistent cognitive deficits following disorder onset. We tested both theories in the Dunedin Study, a population-representative cohort followed from birth to midlife and assessed repeatedly for both cognitive functioning and psychopathology. We also used data from the Environmental Risk Longitudinal Twin Study to test whether childhood cognitive functioning predicts future MDD risk independent of family-wide and genetic risk using a discordant twin design. Contrary to both hypotheses, we found that childhood cognitive functioning did not predict future risk of MDD, nor did study members with a past history of MDD show evidence of greater cognitive decline unless MDD was accompanied by other comorbid psychiatric conditions. Our results thus suggest that low cognitive functioning is related to comorbidity, but is neither an antecedent nor an enduring consequence of MDD. Future research may benefit from considering cognitive deficits that occur during depressive episodes from a transdiagnostic perspective.

Regular Articles
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


The first two authors contributed equally to this article. The Dunedin Multidisciplinary Health and Development Research Unit is funded by the New Zealand Health Research Council and the New Zealand Ministry of Business, Innovation, and Employment. Additional support was provided by US National Institute on Aging (NIA) Grants R01AG032282, R01AG049789, and R01AG048895; UK Medical Research Council Grants MR/P005918/1 and MR/K00381X; Economic and Social Research Council Grant ES/M010309/1; and the Jacobs Foundation. The Environmental Risk (E-Risk) Longitudinal Twin Study is funded by UK Medical Research Council Grant G1002190. Additional support was provided by US National Institute of Child Health and Human Development (NICHD) Grant HD077482, the Jacobs Foundation, and the Duke Social Science Research Institute. We thank the Dunedin and E-Risk Study members, their peer informants, and Dunedin Study founder Phil Silva. Support was also provided by NIA Grant T32-AG000139 and NICHD Grant T32-HD007376 (to J.D.S.), by a National Science Foundation Graduate Research Fellowship (to M.A.S.), and by NIA Grant P30-AG028716 (to D.W.B.).


Adler, D. A., McLaughlin, T. J., Rogers, W. H., Chang, H., Lapitsky, L., & Lerner, D. (2006). Job performance deficits due to depression. American Journal of Psychiatry, 163, 15691576. doi:10.1176/ajp.2006.163.9.1569 Google Scholar
Airaksinen, E., Larsson, M., & Forsell, Y. (2005). Neuropsychological functions in anxiety disorders in population-based samples: Evidence of episodic memory dysfunction. Journal of Psychiatric Research, 39, 207214. doi:10.1016/j.jpsychires.2004.06.001 Google Scholar
American Psychiatric Association. (1987). Diagnostic and statistical manual of mental disorders: DSM-III-R (3rd ed., rev.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
Barnett, J. H., Salmond, C. H., Jones, P. B., & Sahakian, B. J. (2006). Cognitive reserve in neuropsychiatry. Psychological Medicine, 36, 10531064. doi:10.1017/S0033291706007501 Google Scholar
Batty, G. D., Mortensen, E. L., & Osler, M. (2005). Childhood IQ in relation to later psychiatric disorder: Evidence from a Danish birth cohort study. British Journal of Psychiatry, 187, 180181.Google Scholar
Bora, E., Harrison, B. J., Yücel, M., & Pantelis, C. (2013). Cognitive impairment in euthymic major depressive disorder: A meta-analysis. Psychological Medicine, 43, 20172026. doi:10.1017/S0033291712002085 Google Scholar
Bortolato, B., Miskowiak, K. W., Köhler, C. A., Maes, M., Fernandes, B. S., Berk, M., & Carvalho, A. F. (2016). Cognitive remission: A novel objective for the treatment of major depression? BMC Medicine, 14, 9. doi:10.1186/s12916-016-0560-3 Google Scholar
Carlin, J. B., Gurrin, L. C., Sterne, J. A., Morley, R., & Dwyer, T. (2005). Regression models for twin studies: A critical review. International Journal of Epidemiology, 34, 10891099. doi:10.1093/ije/dyi153 Google Scholar
Cassano, P., & Fava, M. (2002). Depression and public health: An overview. Journal of Psychosomatic Research, 53, 849857. doi:10.1016/S0022-3999(02)00304-5 Google Scholar
Christensen, H., Griffiths, K., Mackinnon, A., & Jacomb, P. (1997). A quantitative review of cognitive deficits in depression and Alzheimer-type dementia. Journal of the International Neuropsychological Society, 3, 631651.Google Scholar
Cummings, P. (2009). The relative merits of risk ratios and odds ratios. Archives of Pediatrics and Adolescent Medicine, 163, 438445. doi:10.1001/archpediatrics.2009.31 Google Scholar
Farmer, R. F., Kosty, D. B., Seeley, J. R., Olino, T. M., & Lewinsohn, P. M. (2013). Aggregation of lifetime axis I psychiatric disorders through age 30: Incidence, predictors, and associated psychosocial outcomes. Journal of Abnormal Psychology, 122, 573586. doi:10.1037/a0031429 Google Scholar
Feehan, M., McGee, R., Raja, S. N., & Williams, S. M. (1994). DSM-III-R disorders in New Zealand 18-year-olds. Australian and New Zealand Journal of Psychiatry, 28, 8799. doi:10.3109/00048679409075849 Google Scholar
Fergusson, D. M., Horwood, J. L., & Ridder, E. M. (2005). Show me the child at seven: II. Childhood intelligence and later outcomes in adolescence and young adulthood. Journal of Child Psychology and Psychiatry , 46, 850858. doi:10.1111/j.1469-7610.2005.01472.x Google Scholar
Gale, C. R., Batty, G. D., Tynelius, P., Deary, I. J., & Rasmussen, F. (2010). Intelligence in early adulthood and subsequent hospitalization for mental disorders. Epidemiology, 21, 7077.Google Scholar
Gale, C. R., Deary, I. J., Boyle, S. H., Barefoot, J., Mortensen, L. H., & Batty, G. (2008). Cognitive ability in early adulthood and risk of 5 specific psychiatric disorders in middle age: The Vietnam Experience study. Archives of General Psychiatry, 65, 14101418. doi:10.1001/archpsyc.65.12.1410 Google Scholar
Hirschfeld, R. M. A., Montgomery, S. A., Keller, M. B., Kasper, S., Schatzberg, A. F., Moller, H.-J., … Versiani, M. (2000). Social functioning in depression: A review. Journal of Clinical Psychiatry, 61, 268275.Google Scholar
Horner, M. D., & Hamner, M. B. (2002). Neurocognitive functioning in posttraumatic stress disorder. Neuropsychology Review, 12, 1530. doi:10.1023/A:1015439106231 Google Scholar
Hsu, K. J., & Davison, G. C. (2017). Compounded deficits: The association between neuropsychological impairment and attention biases in currently depressed, formerly depressed, and never depressed individuals. Clinical Psychological Science, 5, 286298. doi:10.1177/2167702617692998 Google Scholar
Iverson, G. L., Lange, R. T., Brooks, B. L., & Rennison, V. L. A. (2010). “Good old days” bias following mild traumatic brain injury. Clinical Neuropsychologist, 24, 1737. doi:10.1080/13854040903190797 Google Scholar
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145, 3948. doi:10.1016/j.psychres.2005.11.011 Google Scholar
Kendler, K. S., Ohlsson, H., Sundquist, J., & Sundquist, K. (2014). IQ and schizophrenia in a Swedish national sample: Their causal relationship and the interaction of IQ with genetic risk. American Journal of Psychiatry, 172, 259265. doi:10.1176/appi.ajp.2014.14040516 Google Scholar
Kennedy, N., Foy, K., Sherazi, R., McDonough, M., & McKeon, P. (2007). Long-term social functioning after depression treated by psychiatrists: A review. Bipolar Disorders, 9, 2537. doi:10.1111/j.1399-5618.2007.00326.x Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., … Wang, P. S. (2003). The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). Journal of the American Medical Association, 289, 30954105. doi:10.1001/jama.289.23.3095 Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593602. doi:10.1001/archpsyc.62.6.593 Google Scholar
Keyes, K. M., Platt, J., Kaufman, A. S., & McLaughlin, K. A. (2016). Association of fluid intelligence and psychiatric disorders in a population-representative sample of U.S. adolescents. JAMA Psychiatry. Advance online publication. doi:10.1001/jamapsychiatry.2016.3723 Google Scholar
Kim-Cohen, J., Caspi, A., Moffitt, T. E., Harrington, H., Milne, B. J., & Poulton, R. (2003). Prior juvenile diagnoses in adults with mental disorder: Developmental follow-back of a prospective-longitudinal cohort. Archives of General Psychiatry, 60, 709717. doi:10.1001/archpsyc.60.7.709 Google Scholar
Koenen, K. C., Moffitt, T. E., Roberts, A. L., Martin, L. T., Kubzansky, L., Harrington, H., … Caspi, A. (2009). Childhood IQ and adult mental disorders: A test of the cognitive reserve hypothesis. American Journal of Psychiatry, 166, 5057. doi:10.1176/appi.ajp.2008.08030343 Google Scholar
Ledford, H. (2016). Drugmakers target depression's cognitive fog. Nature, 530, 17. doi:10.1038/530017a Google Scholar
Lee, R. S. C., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140, 113124. doi:10.1016/j.jad.2011.10.023 Google Scholar
Lewinsohn, P. M., Steinmetz, J. L., Larson, D. W., & Franklin, J. (1981). Depression-related cognitions: Antecedent or consequence? Journal of Abnormal Psychology, 90, 213219. doi:10.1037//0021-843X.90.3.213 Google Scholar
Majer, M., Ising, M., Künzel, H., Binder, E. B., Holsboer, F., Modell, S., & Zihl, J. (2004). Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychological Medicine, 34, 14531463. doi:10.1017/S0033291704002697 Google Scholar
Mann-Wrobel, M. C., Carreno, J. T., & Dickinson, D. (2011). Meta-analysis of neuropsychological functioning in euthymic bipolar disorder: An update and investigation of moderator variables. Bipolar Disorders, 13, 334342. doi:10.1111/j.1399-5618.2011.00935.x Google Scholar
McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119, 18. doi:10.1016/j.jad.2009.04.022 Google Scholar
Meier, M. H., Caspi, A., Ambler, A., Harrington, H., Houts, R., Keefe, R. S. E., … Moffitt, T. E. (2012). Persistent cannabis users show neuropsychological decline from childhood to midlife. Proceedings of the National Academy of Sciences, 109, E2657E2664. doi:10.1073/pnas.1206820109 Google Scholar
Meier, M. H., Caspi, A., Reichenberg, A., Keefe, R. S. E., Fisher, H. L., Harrington, H., … Moffitt, T. E. (2014). Neuropsychological decline in schizophrenia from the premorbid to the post-onset period: Evidence from a population-representative longitudinal study. American Journal of Psychiatry, 171, 91101. doi:10.1176/appi.ajp.2013.12111438 Google Scholar
Melartin, T. K., Rytsälä, H. J., Leskelä, U. S., Lestelä-Mielonen, P. S., Sokero, T. P., & Isometsä, E. T. (2002). Current comorbidity of psychiatric disorders among DSM-IV major depressive disorder patients in psychiatric care in the Vantaa Depression Study. Journal of Clinical Psychiatry, 63, 126134.Google Scholar
Moffitt, T. E., Caspi, A., Taylor, A., Kokaua, J., Milne, B. J., Polanczyk, G., & Poulton, R. (2010). How common are common mental disorders? Evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychological Medicine, 40, 899909. doi:10.1017/S0033291709991036 Google Scholar
Moffitt, T. E., & the E-Risk Study Team. (2002). Teen-aged mothers in contemporary Britain. Journal of Child Psychology and Psychiatry, 43, 727742. doi:10.1111/1469-7610.00082 Google Scholar
Moffitt, T. E., Harrington, H., Caspi, A., Kim-Cohen, J., Goldberg, D., Gregory, A. M., & Poulton, R. (2007). Depression and generalized anxiety disorder: Cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years. Archives of General Psychiatry, 64, 651660. doi:10.1001/archpsyc.64.6.651 Google Scholar
Mullard, A. (2016). FDA rejects first cognitive claim for antidepressant. Nature Reviews Drug Discovery, 15, 299299. doi:10.1038/nrd.2016.92 Google Scholar
Muller, J., & Roberts, J. E. (2005). Memory and attention in obsessive-compulsive disorder: A review. Journal of Anxiety Disorders, 19, 128. doi:10.1016/j.janxdis.2003.12.001 Google Scholar
National Academies of Sciences, Engineering, and Medicine. (2015). Enabling discovery, development, and translation of treatments for cognitive dysfunction in depression: Workshop summary. Washington, DC: National Academies Press.Google Scholar
Newman, D. L., Moffitt, T. E., Caspi, A., Magdol, L., Silva, P. A., & Stanton, W. R. (1996). Psychiatric disorder in a birth cohort of young adults: Prevalence, comorbidity, clinical significance, and new case incidence from ages 11 to 21. Journal of Consulting and Clinical Psychology, 64, 552562. doi:10.1037/0022-006X.64.3.552 Google Scholar
Odgers, C. L., Caspi, A., Bates, C. J., Sampson, R. J., & Moffitt, T. E. (2012). Systematic social observation of children's neighborhoods using Google Street View: A reliable and cost-effective method. Journal of Child Psychology and Psychiatry, 53, 10091017. doi:10.1111/j.1469-7610.2012.02565.x Google Scholar
Philipp, M., Maier, W., & Delmo, C. D. (1991). The concept of major depression. European Archives of Psychiatry and Clinical Neuroscience, 240, 258265. doi:10.1007/BF02189537 Google Scholar
Poulton, R., Moffitt, T. E., & Silva, P. A. (2015). The Dunedin Multidisciplinary Health and Development Study: Overview of the first 40 years, with an eye to the future. Social Psychiatry and Psychiatric Epidemiology, 50, 679693. doi:10.1007/s00127-015-1048-8 Google Scholar
Rajput, S., Hassiotis, A., Richards, M., Hatch, S. L., & Stewart, R. (2011). Associations between IQ and common mental disorders: The 2000 British National Survey of Psychiatric Morbidity. European Psychiatry, 26, 390395. doi:10.1016/j.eurpsy.2010.07.002 Google Scholar
Reichenberg, A., Caspi, A., Harrington, H., Houts, R., Keefe, R. S. E., Murray, R. M., … Moffitt, T. E. (2010). Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: A 30-year study. American Journal of Psychiatry, 167, 160169.Google Scholar
Robins, L., Cottler, L., Bucholz, K., & Compton, W. (1995). Diagnostic Interview Schedule for DSM-IV. St. Louis, MO: Washington University School of Medicine.Google Scholar
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44, 20292040. doi:10.1017/S0033291713002535 Google Scholar
Rogers, M. A., Kasai, K., Koji, M., Fukuda, R., Iwanami, A., Nakagome, K., … Kato, N. (2004). Executive and prefrontal dysfunction in unipolar depression: A review of neuropsychological and imaging evidence. Neuroscience Research, 50, 111. doi:10.1016/j.neures.2004.05.003 Google Scholar
Salmond, C. H., Menon, D. K., Chatfield, D. A., Pickard, J. D., & Sahakian, B. J. (2006). Cognitive reserve as a resilience factor against depression after moderate/severe head injury. Journal of Neurotrauma, 23, 10491058. doi:10.1089/neu.2006.23.1049 Google Scholar
Sattler, J. M. (2008). Assessment of children: Cognitive foundations (5th ed.). San Diego, CA: Author.Google Scholar
Schaefer, J. D., Caspi, A., Belsky, D. W., Harrington, H., Houts, R., Horwood, L. J., … Moffitt, T. E. (2017). Enduring mental health: Prevalence and prediction. Journal of Abnormal Psychology. Advance online publication. doi:10.1037/abn0000232 Google Scholar
Schaefer, J., Giangrande, E., Weinberger, D. R., & Dickinson, D. (2013). The global cognitive impairment in schizophrenia: Consistent over decades and around the world. Schizophrenia Research, 150, 4250. doi:10.1016/j.schres.2013.07.009 Google Scholar
Scult, M. A., Knodt, A. R., Swartz, J. R., Brigidi, B. D., & Hariri, A. R. (2016). Thinking and feeling individual differences in habitual emotion regulation and stress-related mood are associated with prefrontal executive control. Clinical Psychological Science, 5, 150157. doi:10.1177/2167702616654688 Google Scholar
Scult, M. A., Paulli, A. R., Mazure, E. S., Moffitt, T. E., Hariri, A. R., & Strauman, T. J. (2017). The association between cognitive function and subsequent depression: A systematic review and meta-analysis. Psychological Medicine, 47, 117. doi:10.1017/S0033291716002075 Google Scholar
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139, 81132. doi:10.1037/a0028727 Google Scholar
Sørensen, H. J., Sæbye, D., Urfer-Parnas, A., Mortensen, E. L., & Parnas, J. (2012). Premorbid intelligence and educational level in bipolar and unipolar disorders: A Danish draft board study. Journal of Affective Disorders, 136, 11881191. doi:10.1016/j.jad.2011.12.007 Google Scholar
Stavro, K., Pelletier, J., & Potvin, S. (2013). Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addiction Biology, 18, 203213. doi:10.1111/j.1369-1600.2011.00418.x Google Scholar
Takayanagi, Y., Spira, A. P., Roth, K. B., Gallo, J. J., Eaton, W. W., & Mojtabai, R. (2014). Accuracy of reports of lifetime mental and physical disorders: Results from the Baltimore Epidemiological Catchment Area Study. JAMA Psychiatry, 71, 273280. doi:10.1001/jamapsychiatry.2013.3579 Google Scholar
Trouton, A., Spinath, F. M., & Plomin, R. (2002). Twins Early Development Study (TEDS): A multivariate, longitudinal genetic investigation of language, cognition and behavior problems in childhood. Twin Research, 5, 444448. doi:10.1375/136905202320906255 Google Scholar
Wechsler, D. (1974). Manual for the Wechsler Intelligence Scale for Children (rev.). New York: Psychological Corporation.Google Scholar
Wechsler, D. (2008). Wechsler Adult Intelligence Scale (4th ed.). San Antonio, TX: Pearson Assessment.Google Scholar
Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., … Vos, T. (2013). Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet, 382, 15751586. doi:10.1016/S0140-6736(13)61611-6 Google Scholar
Zou, G. (2004). A modified Poisson regression approach to prospective studies with binary data. American Journal of Epidemiology, 159, 702706. doi:10.1093/aje/kwh090 Google Scholar
Supplementary material: File

Schaefer et al supplementary material

Schaefer et al supplementary material 1

Download Schaefer et al supplementary material(File)
File 28 KB