Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 1.181 Render date: 2021-02-26T17:09:49.694Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Developmental psychopathology: The role of structural variation in the genome

Published online by Cambridge University Press:  15 October 2012

Michael Gill
Affiliation:
Trinity College, Dublin
Corresponding
E-mail address:

Abstract

A wide range of developmental disorders present with characteristic psychopathologies and behaviors, with diagnoses including, inter alia, cognitive disorders and learning disabilities, epilepsies, autism, and schizophrenia. Each, to varying extent, has a genetic component to etiology and is associated with cytogenetic abnormalities. Technological developments, particularly array-based comparative genome hybridization and single nucleotide polymorphism chips, has revealed a wide range of rare recurrent and de novo copy number variants (CNVs) to be associated with disorder and psychopathology. It is surprising that many apparently similar CNVs are identified across two or more disorders hitherto considered unrelated. This article describes the characteristics of CNVs and current technological restrictions that make accurately identifying small events difficult. It summarizes the latest discoveries for individual diagnostic categories and considers the implications for a shared neurobiology. It examines likely developments in the knowledge base as well as addressing the clinical implications going forward.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: Author.Google Scholar
Bassett, A. S., Chow, E. W., & Weksberg, R. (2000). Chromosomal abnormalities and schizophrenia. American Journal of Medical Genetics, 97, 4551.3.0.CO;2-9>CrossRefGoogle Scholar
Bassett, A. S., Costain, G., Fung, W. L., Russell, K. J., Pierce, L., Kapadia, R., et al. (2010). Clinically detectable copy number variations in a Canadian catchment population of schizophrenia. Journal of Psychiatric Research, 44, 10051009.CrossRefGoogle Scholar
Bastain, T. M., Lewczyk, C. M., Sharp, W. S., James, R. S., Long, R. T., Eagen, P. B., et al. (2002). Cytogenetic abnormalities in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 806810.CrossRefGoogle ScholarPubMed
Betancur, C. (2011). Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Research, 1380, 4277.CrossRefGoogle ScholarPubMed
Blackwood, D. H., Fordyce, A., Walker, M. T., St. Clair, D. M., Porteous, D. J., & Muir, W. J. (2001). Schizophrenia and affective disorders—Cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: Clinical and P300 findings in a family. American Journal of Human Genetics, 69, 428433.CrossRefGoogle Scholar
Blackwood, D. H., & Muir, W. J. (2004). Clinical phenotypes associated with DISC1: A candidate gene for schizophrenia. Neurotoxicology Research, 6, 3541.CrossRefGoogle Scholar
Burnside, R. D., Pasion, R., Mikhail, F. M., Carroll, A. J., Robin, N. H., Youngs, E. L., et al. (2011). Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: A susceptibility region for neurological dysfunction including developmental and language delay. Human Genetics, 130, 517528.CrossRefGoogle ScholarPubMed
Celestino-Soper, P. B., Shaw, C. A., Sanders, S. J., Li, J., Murtha, M. T., Ercan-Sencicek, A. G., et al. (2011). Use of array CGH to detect exonic copy number variants throughout the genome in autism families detects a novel deletion in TMLHE. Human Molecular Genetics, 20, 43604370.CrossRefGoogle Scholar
Christian, S. L., Brune, C. W., Sudi, J., Kumar, R. A., Liu, S., Karamohamed, S., et al. (2008). Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biological Psychiatry, 63, 11111117.CrossRefGoogle ScholarPubMed
Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., et al. (2010). Origins and functional impact of copy number variation in the human genome. Nature, 464(7289), 704712.CrossRefGoogle Scholar
Cooper, G. M., Coe, B. P., Girirajan, S., Rosenfeld, J. A., Vu, T. H., Baker, C., et al. (2011). A copy number variation morbidity map of developmental delay. Nature Genetics, 43, 838846.CrossRefGoogle ScholarPubMed
Davidson, K., & Bagley, C. (1969). Schizophrenia-like psychoses associated with organic disorders of the central nervous system: A review of the literature. In Herrington, R. (Ed.), Current problems in neuropsychiatry: Schizophrenia, epilepsy, the temporal lobe (Special Publication No. 4, pp. 189). London: British Psychiatric Association.Google Scholar
de Kovel, C. G., Trucks, H., Helbig, I., Mefford, H. C., Baker, C., Leu, C., et al. (2010). Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain, 133(Pt. 1), 2332.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Devoto, M., Lofthouse, R., Poulter, M., Smith, A., Shields, G., et al. (1994). Search for linkage to schizophrenia on the X and Y chromosomes. American Journal of Medical Genetics, 54, 113121.CrossRefGoogle ScholarPubMed
Elia, J., Gai, X., Xie, H. M., Perin, J. C., Geiger, E., Glessner, J. T., et al. (2010). Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Molecular Psychiatry, 15, 637646.CrossRefGoogle ScholarPubMed
Elia, J., Glessner, J. T., Wang, K., Takahashi, N., Shtir, C. J., Hadley, D., et al. (2011). Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature Genetics, 44, 7884.CrossRefGoogle ScholarPubMed
Filges, I., Rothlisberger, B., Blattner, A., Boesch, N., Demougin, P., Wenzel, F., et al. (2011). Deletion in Xp22.11: PTCHD1 is a candidate gene for X-linked intellectual disability with or without autism. Clinical Genetics, 79, 7985.CrossRefGoogle ScholarPubMed
Flint, J., Wilkie, A. O., Buckle, V. J., Winter, R. M., Holland, A. J., & McDermid, H. E. (1995). The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genetics, 9, 132140.CrossRefGoogle ScholarPubMed
Gibson, G. (2011). Rare and common variants: Twenty arguments. Nature Reviews Genetics, 13, 135145.CrossRefGoogle ScholarPubMed
Gillberg, C. (1998). Chromosomal disorders and autism. Journal of Autism and Developmental Disorders, 28, 415425.CrossRefGoogle ScholarPubMed
Girirajan, S., & Eichler, E. E. (2010). Phenotypic variability and genetic susceptibility to genomic disorders. Human Molecular Genetics, 19, R176R187.CrossRefGoogle ScholarPubMed
Gothelf, D., Schaer, M., & Eliez, S. (2008). Genes, brain development and psychiatric phenotypes in velo-cardio-facial syndrome. Development & Disability Research Reviews, 14, 5968.CrossRefGoogle ScholarPubMed
Gu, W., Zhang, F., & Lupski, J. R. (2008). Mechanisms for human genomic rearrangements. Pathogenetics, 1, 4.CrossRefGoogle ScholarPubMed
Gu, Y., Shen, Y., Gibbs, R. A., & Nelson, D. L. (1996). Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nature Genetics, 13, 109113.CrossRefGoogle ScholarPubMed
Hehir-Kwa, J. Y., Wieskamp, N., Webber, C., Pfundt, R., Brunner, H. G., Gilissen, C., et al. (2010). Accurate distinction of pathogenic from benign CNVs in mental retardation. PLoS Computational Biology, 6, e1000752.CrossRefGoogle ScholarPubMed
Heinzen, E. L., Radtke, R. A., Urban, T. J., Cavalleri, G. L., Depondt, C., Need, A. C., et al. (2010). Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. American Journal of Human Genetics, 86, 707718.CrossRefGoogle ScholarPubMed
Helbig, I., Mefford, H. C., Sharp, A. J., Guipponi, M., Fichera, M., Franke, A., et al. (2009). 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nature Genetics, 41, 160162.CrossRefGoogle ScholarPubMed
Horn, D., Kapeller, J., Rivera-Brugues, N., Moog, U., Lorenz-Depiereux, B., Eck, S., et al. (2010). Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Human Mutation, 31, E1851E1860.CrossRefGoogle ScholarPubMed
Hurst, J. A., Baraitser, M., Auger, E., Graham, F., & Norell, S. (1990). An extended family with a dominantly inherited speech disorder. Developmental Medicine & Child Neurology, 32, 352355.CrossRefGoogle Scholar
Ingason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietilainen, O. P., et al. (2011). Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Molecular Psychiatry, 16, 1725.CrossRefGoogle Scholar
International Schizophrenia Consortium. (2008). Rare Chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455, 5.Google Scholar
Itsara, A., Wu, H., Smith, J. D., Nickerson, D. A., Romieu, I., London, S. J., et al. (2010). De novo rates and selection of large copy number variation. Genome Research, 20, 14691481.CrossRefGoogle Scholar
Jacquemont, M. L., Sanlaville, D., Redon, R., Raoul, O., Cormier-Daire, V., Lyonnet, S., et al. (2006). Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. Journal of Medical Genetics, 43, 843849.CrossRefGoogle ScholarPubMed
Jacquemont, S., Reymond, A., Zufferey, F., Harewood, L., Walters, R. G., Kutalik, Z., et al. (2011). Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature, 478(7367), 97102.CrossRefGoogle Scholar
Jaillard, S., Drunat, S., Bendavid, C., Aboura, A., Etcheverry, A., Journel, H., et al. (2010). Identification of gene copy number variations in patients with mental retardation using array-CGH: Novel syndromes in a large French series. European Journal of Medical Genetics, 53, 6675.CrossRefGoogle Scholar
Kaminsky, E. B., Kaul, V., Paschall, J., Church, D. M., Bunke, B., Kunig, D., et al. (2011). An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genetics & Medicine, 13, 777784.CrossRefGoogle Scholar
Kay, D. W. (1963). Late paraphrenia and its bearing on the aetiology of schizophrenia. Acta Psychiatrica Scandinavica, 39, 159169.CrossRefGoogle ScholarPubMed
Knight, S. J., & Flint, J. (2002). Multi-telomere FISH. Methods in Molecular Biology, 204, 155179.Google ScholarPubMed
Koolen, D. A., Pfundt, R., de Leeuw, N., Hehir-Kwa, J. Y., Nillesen, W. M., Neefs, I., et al. (2009). Genomic microarrays in mental retardation: A practical workflow for diagnostic applications. Human Mutation, 30, 283292.CrossRefGoogle Scholar
Kunugi, H., Lee, K. B., & Nanko, S. (1999). Cytogenetic findings in 250 schizophrenics: Evidence confirming an excess of the X chromosome aneuploidies and pericentric inversion of chromosome 9. Schizophrenia Research, 40, 4347.CrossRefGoogle Scholar
Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519523.CrossRefGoogle Scholar
Ledbetter, D. H., & Martin, C. L. (2007). Cryptic telomere imbalance: A 15-year update. American Journal of Medical Genetics, 145C, 327334.CrossRefGoogle ScholarPubMed
Levy, D., Ronemus, M., Yamrom, B., Lee, Y. H., Leotta, A., Kendall, J., et al. (2011). Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 70, 886897.CrossRefGoogle ScholarPubMed
Lupski, J. R. (2007). Structural variation in the human genome. New England Journal of Medicine, 356, 11691171.CrossRefGoogle ScholarPubMed
Lupski, J. R., Belmont, J. W., Boerwinkle, E., & Gibbs, R. A. (2011). Clan genomics and the complex architecture of human disease. Cell, 147, 3243.CrossRefGoogle ScholarPubMed
MacIntyre, D. J., Blackwood, D. H., Porteous, D. J., Pickard, B. S., & Muir, W. J. (2003). Chromosomal abnormalities and mental illness. Molecular Psychiatry, 8, 275287.CrossRefGoogle ScholarPubMed
Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., et al. (2008). Structural variation of chromosomes in autism spectrum disorder. American Journal of Human Genetics, 82, 477488.CrossRefGoogle Scholar
McCarthy, S. E., Makarov, V., Kirov, G., Addington, A. M., McClellan, J., Yoon, S., et al. (2009). Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 41, 12231227.CrossRefGoogle ScholarPubMed
Mefford, H. C., Muhle, H., Ostertag, P., von Spiczak, S., Buysse, K., Baker, C., et al. (2010). Genome-wide copy number variation in epilepsy: Novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genetics, 6, e1000962.CrossRefGoogle ScholarPubMed
Mefford, H. C., & Mulley, J. C. (2010). Genetically complex epilepsies, copy number variants and syndrome constellations. Genome Medicine, 2(10), 71.CrossRefGoogle Scholar
Mefford, H. C., Sharp, A. J., Baker, C., Itsara, A., Jiang, Z., Buysse, K., et al. (2008). Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. New England Journal of Medicine, 359, 16851699.CrossRefGoogle Scholar
Mills, R. E., Walter, K., Stewart, C., Handsaker, R. E., Chen, K., Alkan, C., et al. (2011). Mapping copy number variation by population-scale genome sequencing. Nature, 470(7332), 5965.CrossRefGoogle ScholarPubMed
Mortensen, P. B., Pedersen, M. G., & Pedersen, C. B. (2010). Psychiatric family history and schizophrenia risk in Denmark: Which mental disorders are relevant? Psychological Medicine, 40, 201210.CrossRefGoogle ScholarPubMed
Mulle, J. G., Dodd, A. F., McGrath, J. A., Wolyniec, P. S., Mitchell, A. A., Shetty, A. C., et al. (2010). Microdeletions of 3q29 confer high risk for schizophrenia. American Journal of Human Genetics, 87, 229236.CrossRefGoogle Scholar
Mulley, J. C., & Mefford, H. C. (2011). Epilepsy and the new cytogenetics. Epilepsia, 52, 423432.CrossRefGoogle ScholarPubMed
Mulley, J. C., Nelson, P., Guerrero, S., Dibbens, L., Iona, X., McMahon, J. M., et al. (2006). A new molecular mechanism for severe myoclonic epilepsy of infancy: Exonic deletions in SCN1A. Neurology, 67, 10941095.CrossRefGoogle ScholarPubMed
Murphy, K. C. (2002). Schizophrenia and velo-cardio-facial syndrome. Lancet, 359(9304), 426430.CrossRefGoogle ScholarPubMed
Noor, A., Whibley, A., Marshall, C. R., Gianakopoulos, P. J., Piton, A., Carson, A. R., et al. (2010). Disruption at the PTCHD1 locus on Xp22.11 in autism spectrum disorder and intellectual disability. Science Translational Medicine, 2(49), 49–68.CrossRefGoogle Scholar
Nord, A. S., Roeb, W., Dickel, D. E., Walsh, T., Kusenda, M., O'Connor, K. L., et al. (2011). Reduced transcript expression of genes affected by inherited and de novo CNVs in autism. Genetics, 19, 727731.Google Scholar
Onstad, S., Skre, I., Edvardsen, J., Torgersen, S., & Kringlen, E. (1991). Mental disorders in first-degree relatives of schizophrenics. Acta Psychiatrica Scandinavica, 83, 463467.CrossRefGoogle ScholarPubMed
Penrose, L. (1938). A clinical and genetic study of 1280 cases of mental defect (Special Report 229). London: Medical Research Council.Google Scholar
Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., et al. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304), 368372.CrossRefGoogle Scholar
Reddy, K. S. (2005). Cytogenetic abnormalities and fragile-X syndrome in Autism spectrum disorder. BMC Medical Genetics, 6, 3.CrossRefGoogle ScholarPubMed
Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444454.CrossRefGoogle Scholar
Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., et al. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43, 969976.CrossRefGoogle Scholar
Ropers, H. H. (2010). Genetics of early onset cognitive impairment. Annual Review of Genomics & Human Genetics, 11, 161187.CrossRefGoogle ScholarPubMed
Rucker, J. J., Breen, G., Pinto, D., Pedroso, I., Lewis, C. M., Cohen-Woods, S., et al. (2011). Genome-wide association analysis of copy number variation in recurrent depressive disorder. Molecular Psychiatry. Advance online publication. doi:10.1038/mp.2011.144Google Scholar
Rucker, J. J. H., & McGuffin, P. (2012). Genomic structural variation in psychiatric disorders. Development and Psychopathology, 24, 13351344.CrossRefGoogle ScholarPubMed
Rutter, M., & Sroufe, L. A. (2000). Developmental psychopathology: Concepts and challenges. Developmental Psychopathology, 12, 265296.CrossRefGoogle ScholarPubMed
Sahoo, T., Theisen, A., Rosenfeld, J. A., Lamb, A. N., Ravnan, J. B., Schultz, R. A., et al. (2011). Copy number variants of schizophrenia susceptibility loci are associated with a spectrum of speech and developmental delays and behavior problems. Genetics and Medicine, 13, 868880.CrossRefGoogle ScholarPubMed
Salyakina, D., Cukier, H. N., Lee, J. M., Sacharow, S., Nations, L. D., Ma, D., et al. (2011). Copy number variants in extended autism spectrum disorder families reveal candidates potentially involved in autism risk. PLoS One, 6, e26049.CrossRefGoogle Scholar
Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70, 863885.CrossRefGoogle Scholar
Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316(5823), 445449.CrossRefGoogle ScholarPubMed
Shinawi, M., & Cheung, S. W. (2008). The array CGH and its clinical applications. Drug Discovery Today, 13, 760770.CrossRefGoogle ScholarPubMed
Shinawi, M., Liu, P., Kang, S. H., Shen, J., Belmont, J. W., Scott, D. A., et al. (2010). Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. Journal of Medical Genetics, 47, 332341.CrossRefGoogle ScholarPubMed
Sklar, P., Ripke, S., Scott, L. J., Andreassen, O. A., Cichon, S., Craddock, N., et al. (2011). Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 43, 977983.CrossRefGoogle Scholar
Smith, A. C. M., Boyd, K., Elsea, S. H., Finucane, B. M., Haas-Givler, B., Gropman, A., et al. (1993). Smith–Magenis syndrome. In Pagon, R. A., Bird, T. D., Dolan, C. R. & Stephens, K. (Eds.), Gene reviews. Seattle, WA: University of Seattle.Google Scholar
St. Clair, D., Blackwood, D., Muir, W., Carothers, A., Walker, M., Spowart, G., et al. (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336(8706), 1316.CrossRefGoogle ScholarPubMed
Stefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P., Ingason, A., Steinberg, S., et al. (2008). Large recurrent microdeletions associated with schizophrenia. Nature, 455(7210), 232236.CrossRefGoogle ScholarPubMed
Stephen, E., & Kindley, A. D. (2006). Should children with ADHD and normal intelligence be routinely screened for underlying cytogenetic abnormalities? Archives of Disease in Childhood, 91, 860861.CrossRefGoogle ScholarPubMed
Stranger, B. E., Forrest, M. S., Dunning, M., Ingle, C. E., Beazley, C., Thorne, N., et al. (2007). Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 315(5813), 848853.CrossRefGoogle Scholar
Striano, P., Coppola, A., Paravidino, R., Malacarne, M., Gimelli, S., Robbiano, A., et al. (2011). Clinical significance of rare copy number variations in epilepsy: A case-control survey using microarray-based comparative genomic hybridization. Archives of Neurology, 69, 322330.CrossRefGoogle ScholarPubMed
Sundaram, S. K., Huq, A. M., Wilson, B. J., & Chugani, H. T. (2010). Tourette syndrome is associated with recurrent exonic copy number variants. Neurology, 74, 15831590.CrossRefGoogle ScholarPubMed
Swillen, A., Devriendt, K., Legius, E., Prinzie, P., Vogels, A., Ghesquiere, P., et al. (1999). The behavioural phenotype in velo-cardio-facial syndrome (VCFS): From infancy to adolescence. Genetic Counselling, 10, 7988.Google Scholar
Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319328.CrossRefGoogle Scholar
Thorup, A., Waltoft, B. L., Pedersen, C. B., Mortensen, P. B., & Nordentoft, M. (2007). Young males have a higher risk of developing schizophrenia: A Danish register study. Psychological Medicine, 37, 479484.CrossRefGoogle ScholarPubMed
Turner, D. J., Miretti, M., Rajan, D., Fiegler, H., Carter, N. P., Blayney, M. L., et al. (2008). Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nature Genetics, 40, 9095.CrossRefGoogle ScholarPubMed
Vacic, V., McCarthy, S., Malhotra, D., Murray, F., Chou, H. H., Peoples, A., et al. (2011). Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 471(7339), 499503.CrossRefGoogle ScholarPubMed
van Karnebeek, C. D., Jansweijer, M. C., Leenders, A. G., Offringa, M., & Hennekam, R. C. (2005). Diagnostic investigations in individuals with mental retardation: A systematic literature review of their usefulness. European Journal of Human Genetics, 13, 625.CrossRefGoogle ScholarPubMed
Vassos, E., Collier, D. A., Holden, S., Patch, C., Rujescu, D., St Clair, D., & Lewis, C. M. (2010). Penetrance for copy number variants associated with schizophrenia. Human Molecular Genetics, 19, 34773481.CrossRefGoogle Scholar
Vorstman, J. A., Staal, W. G., van Daalen, E., van Engeland, H., Hochstenbach, P. F., & Franke, L. (2006). Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Molecular Psychiatry, 11, 1, 1828.CrossRefGoogle ScholarPubMed
Waddington, J. L., & Youssef, H. A. (1988). The expression of schizophrenia, affective disorder and vulnerability to tardive dyskinesia in an extensive pedigree. British Journal of Psychiatry, 153, 376381.CrossRefGoogle Scholar
Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., et al. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320(5875), 539543.CrossRefGoogle Scholar
Whibley, A. C., Plagnol, V., Tarpey, P. S., Abidi, F., Fullston, T., Choma, M. K., et al. (2010). Fine-scale survey of X chromosome copy number variants and indels underlying intellectual disability. American Journal of Human Genetics, 87, 173188.CrossRefGoogle Scholar
Williams, H. J., Craddock, N., Russo, G., Hamshere, M. L., Moskvina, V., Dwyer, S., et al. (2011). Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Human Molecular Genetics, 20, 387391.CrossRefGoogle Scholar
Williams, N. M., Zaharieva, I., Martin, A., Langley, K., Mantripragada, K., Fossdal, R., et al. (2010). Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: A genome-wide analysis. Lancet, 376(9750), 14011408.CrossRefGoogle ScholarPubMed
World Health Organization. (1992). Clinical description and diagnostic guidelines. Geneva: Author.Google Scholar
Xi, R., Hadjipanayis, A. G., Luquette, L. J., Kim, T. M., Lee, E., Zhang, J., et al. (2011). Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proceedings of the National Academy of Sciences, 108, E1128E1136.CrossRefGoogle Scholar
Xu, S., Han, J. C., Morales, A., Menzie, C. M., Williams, K., & Fan, Y. S. (2008). Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenetics and Genome Research, 122, 181187.CrossRefGoogle ScholarPubMed
Zhang, F., Gu, W., Hurles, M. E., & Lupski, J. R. (2009). Copy number variation in human health, disease, and evolution. Annual Review of Genomics and Human Genetics, 10, 451481.CrossRefGoogle ScholarPubMed
Zhang, Y. H., Huang, B. L., Niakan, K. K., McCabe, L. L., McCabe, E. R., & Dipple, K. M. (2004). IL1RAPL1 is associated with mental retardation in patients with complex glycerol kinase deficiency who have deletions extending telomeric of DAX1. Human Mutation, 24, 273.CrossRefGoogle ScholarPubMed
Zhao, X., Leotta, A., Kustanovich, V., Lajonchere, C., Geschwind, D. H., Law, K., et al. (2007). A unified genetic theory for sporadic and inherited autism. Proceedings of the National Academy of Sciences, 104, 1283112836.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 12
Total number of PDF views: 73 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Developmental psychopathology: The role of structural variation in the genome
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Developmental psychopathology: The role of structural variation in the genome
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Developmental psychopathology: The role of structural variation in the genome
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *