Skip to main content Accessibility help
×
Home

Vanishing of negative $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}K$ -theory in positive characteristic

  • Shane Kelly (a1)

Abstract

We show how a theorem of Gabber on alterations can be used to apply the work of Cisinski, Suslin, Voevodsky, and Weibel to prove that $K_n(X) \otimes \mathbb{Z}[{1}/{p}]= 0$ for $n < {-}\! \dim X$ where $X$ is a quasi-excellent noetherian scheme, $p$ is a prime that is nilpotent on $X$ , and $K_n$ is the $K$ -theory of Bass–Thomason–Trobaugh. This gives a partial answer to a question of Weibel.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vanishing of negative $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}K$ -theory in positive characteristic
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vanishing of negative $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}K$ -theory in positive characteristic
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vanishing of negative $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}K$ -theory in positive characteristic
      Available formats
      ×

Copyright

References

Hide All
[Ayo07]Ayoub, J., Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I, Astérisque 314 (2007), x+466; (2008); MR 2423375 (2009h:14032).
[CHSW08]Cortiñas, G., Haesemeyer, C., Schlichting, M. and Weibel, C., Cyclic homology, cdh-cohomology and negative K-theory, Ann. of Math. (2) 167 (2008), 549573; MR 2415380 (2009c:19006).
[Cis13]Cisinski, D. C., Descente par éclatements en K-théorie invariante par homotopie, Ann. of Math. (2) 177 (2013), 425448.
[FS02]Friedlander, E. and Suslin, A., The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. Éc. Norm. Supér. (4) 35 (2002), 773875; MR 1949356 (2004b:19006).
[FV00]Friedlander, E. and Voevodsky, V., Bivariant cycle cohomology, in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 138187; MR 1764201.
[Gab05]Gabber, O., Finiteness theorems for étale cohomology of excellent schemes, in Conference in honor of P. Deligne on the occasion of his 61st birthday (October 2005) (IAS, Princeton, NJ, 2005).
[GH10]Geisser, T. and Hesselholt, L., On the vanishing of negative K-groups, Math. Ann. 348 (2010), 707736; MR 2677901 (2011j:19004).
[Gro66]Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci. 255 (1966); MR 0217086 (36 #178).
[Gro67]Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 361 (1967); MR 0238860 (39 #220).
[GV72]Grothendieck, A. and Verdier, J. L., Théorie des topos et cohomologie étale des schémas. Tome 2. Exposé VI: Conditions de finitude. Topos et sites fibrés. Applications aux techniques de passage á la limite, Lecture Notes in Mathematics, vol. 270 (Springer, Berlin, 1972); Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat; MR 0354653 (50 #7131).
[Hae04]Haesemeyer, C., Descent properties of homotopy K-theory, Duke Math. J. 125 (2004), 589620; MR 2166754 (2006g:19002).
[HKØ13]Hoyois, M., Kelly, S. and Østvær, P. A., The motivic Steenrod algebra in positive characteristic, Preprint (2013), arXiv:1305.5690.
[Ill09]Illusie, L., On gabber’s refined uniformization, http://www.math.u-psud.fr/illusie/refined_uniformization3.pdf, 2009, Notes for an exposé given at the University of Tokyo.
[ILO12]Illusie, L., Laszlo, Y. and Orgogozo, F., Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, http://www.math.polytechnique.fr/orgogozo/travaux_de_Gabber/, 2012.
[Joh77]Johnstone, P. T., Topos theory, London Mathematical Society Monographs, vol. 10 (Academic Press [Harcourt Brace Jovanovich Publishers], London, 1977); MR 0470019 (57 #9791).
[Kel12]Kelly, S., Triangulated categories of motives in positive characteristic, PhD thesis, Université Paris 13, Australian National University (2012), arXiv:1305.5349.
[RG71]Raynaud, M. and Gruson, L., Critères de platitude et de projectivité. Techniques de platification d’un module, Invent. Math. 13 (1971), 189; MR 0308104 (46 #7219).
[Sus00]Suslin, A., Higher Chow groups and etale cohomology, in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 239254; MR 1764203.
[SV00a]Suslin, A. and Voevodsky, V., Bloch-Kato conjecture and motivic cohomology with finite coefficients, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Science Series C: Mathematical and Physical Sciences, vol. 548 (Kluwer Academic, Dordrecht, 2000), 117189; MR 1744945 (2001g:14031).
[SV00b]Suslin, A. and Voevodsky, V., Relative cycles and Chow sheaves, in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 1086; MR 1764199.
[Tho85]Thomason, R. W., Algebraic K-theory and étale cohomology, Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 437552; MR 826102 (87k:14016).
[TT90]Thomason, R. W. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, in The grothendieck festschrift, vol. III, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, MA, 1990), 247435; MR 1106918 (92f:19001).
[Ver72a]Verdier, J. L., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Exposé II: Topologies et faisceaux, Lecture Notes in Mathematics, vol. 269 (Springer, Berlin, 1972), Séminaire de Géométrie Algébrique du Bois–Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint–Donat; MR 0354652 (50 #7130).
[Ver72b]Verdier, J. L., Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Exposé III: Fonctorialité des categories des faisceaux, Lecture Notes in Mathematics, vol. 269 (Springer, Berlin, 1972), Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat; MR 0354652 (50 #7130).
[Voe00]Voevodsky, V., Triangulated categories of motives over a field, in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000), 188238; MR 1764202.
[Voe10a]Voevodsky, V., Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra 214 (2010), 13841398; MR 2593670 (2011a:55022).
[Voe10b]Voevodsky, V., Unstable motivic homotopy categories in Nisnevich and cdh-topologies, J. Pure Appl. Algebra 214 (2010), 13991406; MR 2593671 (2011e:14041).
[Wei80]Weibel, C., K-theory and analytic isomorphisms, Invent. Math. 61 (1980), 177197; MR 590161 (83b:13011).
[Wei81]Weibel, C., Meyer vietoris sequences and module structures on N K, in Algebraic K-theory (Evanston, 1980), Lecture Notes in Mathematics, vol. 854, eds Friedlander, E. and Stein, M. (Springer, Berlin, 1981), 466493.
[Wei89]Weibel, C., Homotopy algebraic K-theory, in Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), Contemporary Mathematics, vol. 83 (American Mathematical Society, Providence, RI, 1989), 461488; MR 991991 (90d:18006).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed