Skip to main content Accessibility help

Towards a symplectic version of the Chevalley restriction theorem

  • Michael Bulois (a1), Christian Lehn (a2), Manfred Lehn (a3) and Ronan Terpereau (a4) (a5)


If $(G,V)$ is a polar representation with Cartan subspace $\mathfrak{c}$ and Weyl group $W$ , it is shown that there is a natural morphism of Poisson schemes $\mathfrak{c}\oplus \mathfrak{c}^{\ast }/W\rightarrow V\oplus V^{\ast }/\!\!/\!\!/G$ . This morphism is conjectured to be an isomorphism of the underlying reduced varieties if $(G,V)$ is visible. The conjecture is proved for visible stable locally free polar representations and some other examples.



Hide All
[Bea00] Beauville, A., Symplectic singularities , Invent. Math. 139 (2000), 541549.
[Bec09] Becker, T., On the existence of symplectic resolutions of symplectic reductions , Math. Z. 265 (2009), 343363.
[Cra03] Crawley-Boevey, W., Normality of Marsden–Weinstein reductions for representations of quivers , Math. Ann. 325 (2003), 5579.
[DK85] Dadok, J. and Kac, V., Polar representations , J. Algebra 92 (1985), 504524.
[DGPS15] Decker, W., Greuel, G.-M., Pfister, G. and Schönemann, H., Singular: a computer algebra system for polynomial computations, version 4-0-2 (2015),
[GS] Grayson, D. and Stillman, M., Macaulay2: a software system for research in algebraic geometry and commutative algebra, version 1.9.2 (2016),
[Hun97] Hunziker, M., Classical invariant theory for finite reflection groups , Transform. Groups 2 (1997), 147163.
[Jos97] Joseph, A., On a Harish-Chandra homomorphism , C. R. Math. Acad. Sci. 324 (1997), 759764.
[Jun09] Jung, B., Ein symplektischer Scheibensatz, Diplomarbeit, Johannes Gutenberg-Universität Mainz (2009).
[Kac80] Kac, V., Some remarks on nilpotent orbits , J. Algebra 64 (1980), 190213.
[Kac90] Kac, V., Infinite-dimensional Lie algebras, third edition (Cambridge University Press, Cambridge, 1990).
[Kal06] Kaledin, D. B., Symplectic singularities from the Poisson point of view , J. Reine Angew. Math. 600 (2006), 135156.
[vLCL92] van Leeuwen, M. A. A., Cohen, A. M. and Lisser, B., LiE: a package for Lie group computations (Computer Algebra Nederland, Amsterdam, 1992).
[Leh07] Lehn, C., Polare Darstellungen und symplektische Reduktion, Diplomarbeit, Johannes Gutenberg-Universität Mainz (2007).
[LS12] Lehn, M. and Sorger, C., A symplectic resolution for the binary tetrahedral group , in Geometric methods in representation theory II, Séminaires et Congrès, vol. 24-II, ed. Brion, M. (Société Mathématique de France, Paris, 2012), 429435.
[Lun73] Luna, D., Slices étales , in Sur les groupes algébriques, Mémoires de la Société Mathématique de France, vol. 33 (Société Mathématique de France, Paris, 1973), 81105.
[MF82] Mumford, D. and Fogarty, J., Geometric invariant theory, second edition (Springer, Berlin, 1982).
[Pan94] Panyushev, D., The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties , Compositio Math. 94 (1994), 181199.
[Pan04] Panyushev, D., On the irreducibility of commuting varieties associated to involutions of simple Lie algebras , Funct. Anal. Appl. 38 (2004), 3844.
[PY07] Panyushev, D. and Yakimova, Y., Symmetric pairs and associated commuting varieties , Math. Proc. Cambridge Philos. Soc. 143 (2007), 307321.
[Pop08] Popov, V. L., Irregular and singular loci of commuting varieties , Transform. Groups 13 (2008), 819837.
[PV94] Popov, V. L. and Vinberg, E. B., Invariant theory , in Algebraic geometry, IV: Encyclopaedia of Mathematical Sciences, vol. 55 (Springer, Berlin, 1994), 123278; translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 55 (1989), 137–309.
[Pro15] Procesi, C., Invariants of commuting matrices, Preprint (2015), arXiv:1501.05190.
[Ric79] Richardson, R., Commuting varieties of semisimple Lie algebras and algebraic groups , Compositio Math. 38 (1979), 311327.
[Sch78] Schwarz, G., Representations of simple Lie groups with regular rings of invariants , Invent. Math. 49 (1978), 167191.
[Sch07] Schwarz, G., When polarizations generate , Transform. Groups 12 (2007), 761767.
[Ter12] Terpereau, R., Schémas de Hilbert invariants et théorie classique des invariants, PhD thesis, Université de Grenoble (2012), arXiv:1211.1472.
[Ter14] Terpereau, R., Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups , Math. Z. 277 (2014), 339359.
[Tev00] Tevelev, E. A., On the Chevalley restriction theorem , J. Lie Theory 10 (2000), 323330.
[Vin76] Vinberg, E., The Weyl group of a graded Lie algebra , Math. USSR Izvestija 10 (1976), 463495.
[ZS58] Zariski, O. and Samuel, P., Commutative algebra (Van Nostrand, Princeton, 1958).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Towards a symplectic version of the Chevalley restriction theorem

  • Michael Bulois (a1), Christian Lehn (a2), Manfred Lehn (a3) and Ronan Terpereau (a4) (a5)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed