Skip to main content Accessibility help
×
Home

Sur le rang des courbes elliptiques sur les corps de classes de Hilbert

  • Nicolas Templier (a1)

Abstract

Let E/ℚ be an elliptic curve and let D<0 be a sufficiently large fundamental discriminant. If contains Heegner points of discriminant D, those points generate a subgroup of rank at least |D|δ, where δ>0 is an absolute constant. This result is compatible with the Birch and Swinnerton-Dyer conjecture.

Soit E/ℚ une courbe elliptique. Soit D<0 un discriminant fondamental suffisamment grand. Si contient des points de Heegner de discriminant D, ces points engendrent un sous-groupe dont le rang est supérieur à |D|δ, où δ>0 est une constante absolue. Ce résultat est en accord avec la conjecture de Birch et Swinnerton-Dyer.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sur le rang des courbes elliptiques sur les corps de classes de Hilbert
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sur le rang des courbes elliptiques sur les corps de classes de Hilbert
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sur le rang des courbes elliptiques sur les corps de classes de Hilbert
      Available formats
      ×

Copyright

References

Hide All
[AN10]Aflalo, E. and Nekovář, J., Non-triviality of CM points in ring class field towers, Israel J. Math. 175 (2010), 225284.
[BCHIS66]Borel, A., Chowla, S., Herz, C. S., Iwasawa, K. and Serre, J.-P., Seminar on complex multiplication, in Seminar held at the Institute for Advanced Study, Princeton, NJ, 1957–1958, Lecture Notes in Mathematics, vol. 21 (Springer, Berlin, 1966).
[BCDT01]Breuil, C., Conrad, B., Diamond, F. and Taylor, R., On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843939.
[BP09]Buium, A. and Poonen, B., Independence of points on elliptic curves arising from special points on modular and Shimura curves. I. Global results, Duke Math. J. 147 (2009), 181191.
[BFH90]Bump, D., Friedberg, S. and Hoffstein, J., Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543618.
[Cor02a]Cornut, C., Mazur’s conjecture on higher Heegner points, Invent. Math. 148 (2002), 495523.
[Cor02b]Cornut, C., Non-trivialité des points de Heegner, C. R. Math. Acad. Sci. Paris 334 (2002), 10391042.
[CV05]Cornut, C. and Vatsal, V., CM points and quaternion algebras, Doc. Math. 10 (2005), 263309 (electronic).
[CV07]Cornut, C. and Vatsal, V., Nontriviality of Rankin–Selberg L-functions and CM points, in L-functions and Galois representations, London Mathematical Society Lecture Note Series, vol. 320 (Cambridge University Press, Cambridge, 2007), 121186.
[Dar01]Darmon, H., Integration on ℋp×ℋ and arithmetic applications, Ann. of Math. (2) 154 (2001), 589639.
[Dar04]Darmon, H., Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004).
[Dar06]Darmon, H., Heegner points, Stark–Heegner points, and values of L-series, in International congress of mathematicians, Vol. II (Eur. Math. Soc. Zürich, 2006), 313345.
[Duk88]Duke, W., Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), 7390.
[DFI95]Duke, W., Friedlander, J. and Iwaniec, H., Class group L-functions, Duke Math. J. 79 (1995), 156.
[Gro88]Gross, B., Local orders, root numbers, and modular curves, Amer. J. Math. 110 (1988), 11531182.
[GP91]Gross, B. and Prasad, D., Test vectors for linear forms, Math. Ann. 291 (1991), 343355.
[GZ86]Gross, B. and Zagier, D., Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225320.
[HPS89]Hijikata, H., Pizer, A. and Shemanske, T., Orders in quaternion algebras, J. Reine Angew. Math. 394 (1989), 59106.
[Iwa90]Iwaniec, H., On the order of vanishing of modular L-functions at the critical point, Sém. Théor. Nombres Bordeaux (2) 2 (1990), 365376.
[Jac72]Jacquet, H., Automorphic forms on GL(2). Part II, Lecture Notes in Mathematics, vol. 278 (Springer, Berlin, 1972).
[JL70]Jacquet, H. and Langlands, R., Automorphic forms on GL(2) (Springer, Berlin, 1970).
[KS99]Katz, N. and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45 (American Mathematical Society, Providence, RI, 1999).
[Kol88a]Kolyvagin, V., Finiteness of E(Q) and SH(E,Q) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522540, 670–671.
[Kol88b]Kolyvagin, V., The Mordell–Weil and Shafarevich–Tate groups for Weil elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 11541180, 1327.
[Maz84]Mazur, B., Modular curves and arithmetic, in Proceedings of the International Congress of Mathematicians (Warsaw 1983), Vol. 1, 2 (PWN, Warsaw, 1984), 185211.
[MS74]Mazur, B. and Swinnerton-Dyer, P., Arithmetic of Weil curves, Invent. Math. 25 (1974), 161.
[Mic04]Michel, Ph., The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points, Ann. of Math. (2) 160 (2004), 185236.
[MV06]Michel, Ph. and Venkatesh, A., Equidistribution, L-functions and ergodic theory: on some problems of Yu. Linnik, in International congress of mathematicians, Vol. II (Eur. Math. Soc. Zürich, 2006), 421457.
[MV07]Michel, Ph. and Venkatesh, A., Heegner points and non-vanishing of Rankin/SelbergL-functions, in Analytic number theory, Clay Mathematics Proceedings, vol. 7 (American Mathematical Society, Providence, RI, 2007), 169183.
[MR82]Montgomery, H. and Rohrlich, D., On the L-functions of canonical Hecke characters of imaginary quadratic fields. II, Duke Math. J. 49 (1982), 937942.
[MM91]Murty, M. and Murty, V., Mean values of derivatives of modular L-series, Ann. of Math. (2) 133 (1991), 447475.
[Nek07]Nekovář, J., The Euler system method for CM points on Shimura curves, in L-functions and Galois representations, London Mathematical Society Lecture Note Series, vol. 320 (Cambridge University Press, Cambridge, 2007), 471547.
[NS99]Nekovář, J. and Schappacher, N., On the asymptotic behaviour of Heegner points, Turkish J. Math. 23 (1999), 549556.
[PR94]Platonov, V. and Rapinchuk, A., Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139 (Academic Press, Boston, MA, 1994), Translated from the 1991 Russian original by Rachel Rowen.
[Pra07]Prasad, D., Relating invariant linear form and local epsilon factors via global methods, Duke Math. J. 138 (2007), 233261.
[Rib92]Ribet, K., Abelian varieties over Q and modular forms, in Algebra and topology 1992 (Taejŏn) (Korea Advanced Institute of Science and Technology, Taejŏn, 1992), 5379.
[RT09]Ricotta, G. and Templier, N., Comportement asymptotique des hauteurs des points de Heegner, J. Théor. Nombres Bordeaux 21 (2009), 741753.
[RV08]Ricotta, G. and Vidick, T., Hauteur asymptotique des points de Heegner, Canad. J. Math. 60 (2008), 14061436 (in French, with English summary).
[Roh80a]Rohrlich, D., Galois conjugacy of unramified twists of Hecke characters, Duke Math. J. 47 (1980), 695703.
[Roh80b]Rohrlich, D., The nonvanishing of certain Hecke L-functions at the center of the critical strip, Duke Math. J. 47 (1980), 223232.
[Roh80c]Rohrlich, D., On the L-functions of canonical Hecke characters of imaginary quadratic fields, Duke Math. J. 47 (1980), 547557.
[RS07]Rosen, M. and Silverman, J., On the independence of Heegner points associated to distinct quadratic imaginary fields, J. Number Theory 127 (2007), 1036.
[Sie35]Siegel, C.-L., Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 8386 (reprinted in Ges. Abh. I, 406–409, Springer, Berlin, 1966).
[Sil09]Silverman, J., The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, second edition (Springer, New York, 2009), corrected reprint of the 1986 original.
[SUZ97]Szpiro, L., Ullmo, E. and Zhang, S., Équirépartition des petits points, Invent. Math. 127 (1997), 337347.
[TW95]Taylor, R. and Wiles, A., Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), 553572.
[Tem07]Templier, N., Heegner points and Eisenstein series, Preprint (2007), available at http://arxiv.org/abs/0808.1476, Forum Math., to appear.
[Tem08a]Templier, N., Minoration de rangs de courbes elliptiques, C. R. Math. Acad. Sci. Paris 346 (2008), 12251230 (in French, with English and French summaries).
[Tem08b]Templier, N., A non-split sum of coefficients of modular forms, Preprint (2008), available at arXiv:0902.2496, Duke Math. J., to appear.
[Tun83]Tunnell, J., Local ϵ-factors and characters of GL(2), Amer. J. Math. 105 (1983), 12771307.
[Ull98]Ullmo, E., Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), 167179.
[Vat03]Vatsal, V., Special values of anticyclotomic L-functions, Duke Math. J. 116 (2003), 219261.
[Wal85]Waldspurger, J.-L., Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math. 54 (1985), 173242.
[Wil95]Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443551.
[Win07]Wintenberger, J.-P., La conjecture de modularité de Serre : le cas de conducteur (d’après C. Khare), Astérisque (2007), Exp. No. 956, viii, 99–121, Sém. Bourbaki. Vol. 2005–2006.
[YZZ]Yuan, X., Zhang, S.-W. and Zhang, W., Gross–Zagier formula, Ann. of Math. Stud., to appear.
[Zha98]Zhang, S.-W., Equidistribution of small points on abelian varieties, Ann. of Math. (2) 147 (1998), 159165.
[Zha01a]Zhang, S.-W., Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), 27147.
[Zha01b]Zhang, S.-W., Gross–Zagier formula for GL 2, Asian J. Math. 5 (2001), 183290.
[Zha05]Zhang, S.-W., Equidistribution of CM-points on quaternion Shimura varieties, Int. Math. Res. Not. (2005), 36573689.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Sur le rang des courbes elliptiques sur les corps de classes de Hilbert

  • Nicolas Templier (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed