Skip to main content Accessibility help
×
Home

Spherical subgroups in simple algebraic groups

  • Friedrich Knop (a1) and Gerhard Röhrle (a2)

Abstract

Let $G$ be a simple algebraic group. A closed subgroup $H$ of $G$ is said to be spherical if it has a dense orbit on the flag variety $G/B$ of $G$ . Reductive spherical subgroups of simple Lie groups were classified by Krämer in 1979. In 1997, Brundan showed that each example from Krämer’s list also gives rise to a spherical subgroup in the corresponding simple algebraic group in any positive characteristic. Nevertheless, up to now there has been no classification of all such instances in positive characteristic. The goal of this paper is to complete this classification. It turns out that there is only one additional instance (up to isogeny) in characteristic 2 which has no counterpart in Krämer’s classification. As one of our key tools, we prove a general deformation result for subgroup schemes that allows us to deduce the sphericality of subgroups in positive characteristic from the same property for subgroups in characteristic zero.

Copyright

References

Hide All
[Ana73]Anantharaman, S., Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Bull. Soc. Math. France, Mem. 33 (1973), 579.
[BMR05]Bate, M., Martin, B. and Röhrle, G., A geometric approach to complete reducibility, Invent. Math. 161 (2005), 177218.
[BMRT13]Bate, M., Martin, B., Röhrle, G. and Tange, R., Closed orbits and uniform S-instability in geometric invariant theory, Trans. Amer. Math. Soc. 365 (2013), 36433673.
[Bou68]Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, vol. 1337 (Hermann, Paris, 1968).
[BP11]Bravi, P. and Pezzini, G., Primitive wonderful varieties, Preprint (2011), arXiv:1106.3187.
[BT84]Bruhat, F. and Tits, J., Groupes réductifs sur un corps local: II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197376.
[Bru98]Brundan, J., Dense orbits and double cosets, in Algebraic groups and their representations (Cambridge, 1997), NATO Advanced Study Institutes Series C: Mathematical and Physical Sciences, vol. 517 (Kluwer, Dordrecht, 1998), 259274.
[CPS75]Cline, E., Parshall, B. and Scott, L., Cohomology of finite groups of Lie type. I, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 169191.
[CPSvdK77]Cline, E., Parshall, B., Scott, L. and van der Kallen, W., Rational and generic cohomology, Invent. Math. 39 (1977), 143163.
[Duc04]Duckworth, W. E., Infiniteness of double coset collections in algebraic groups, J. Algebra 273 (2004), 718733.
[FvdK10]Franjou, V. and van der Kallen, W., Power reductivity over an arbitrary base, Doc. Math., Extra Vol. (2010), 171195.
[GW09]Goodman, R. and Wallach, N., Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255 (Springer, Dordrecht, 2009).
[GLMS97]Guralnick, R. M., Liebeck, M. W., Macpherson, D. and Seitz, G. M., Modules for algebraic groups with finitely many orbits on subspaces, J. Algebra 196 (1997), 211250.
[Jan03]Jantzen, J. C., Representations of algebraic groups, Mathematical Surveys and Monographs, vol. 107, second edition (American Mathematical Society, Providence, RI, 2003).
[Kno93]Knop, F., Über invariante Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann. 295 (1993), 333363.
[Kno95]Knop, F., On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995), 285309.
[Kno14]Knop, F., Spherical roots of spherical varieties, Ann. Inst. Fourier (Grenoble) 64 (2014), 25032526.
[Krä79]Krämer, M., Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129153.
[LS04]Liebeck, M. and Seitz, G., The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Amer. Math. Soc. 802 (2004), 1227.
[Lüb01]Lübeck, F., Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math. 4 (2001), 135169.
[Ric88]Richardson, R. W., Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), 135.
[Ros56]Rosenlicht, M., Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401443.
[SGA3]Demazure, M. and Grothendieck, A. (eds), Schémas en groupes, inSéminaire de Géométrie Algébrique de l’Institut des Hautes Études Scientifiques, 1963 (SGA3), deuxième édition (Institut des Hautes Études Scientifiques, Paris, 1963/1964). (Revised versions appeared as Lecture Notes in Mathematics, vol. 151–153 (Springer) and Doc. Math., vol. 7–8.)
[Sei98]Seitz, G., Double cosets in algebraic groups, in Algebraic groups and their representations (Cambridge, 1997), NATO Advanced Study Institutes Series C: Mathematical and Physical Sciences, vol. 517 (Kluwer, Dordrecht, 1998), 241257.
[Ser05]Serre, J.-P., Complète réductibilité, Astérisque 299 (2005), 195217; Séminaire Bourbaki, Vol. 2003/2004, Exp. No. 932.
[Ses77]Seshadri, C. S., Geometric reductivity over arbitrary base, Adv. Math. 3 (1977), 225274.
[Spr85]Springer, T. A., Some results on algebraic groups with involutions, in Algebraic groups and related topics, Advanced Studies in Pure Mathematics, vol. 6 (North-Holland, Amsterdam, 1985), 525543.
[Spr98]Springer, T. A., Linear algebraic groups, Progress in Mathematics, vol. 9, second edition (Birkhäuser, Boston, 1998).
[Sum75]Sumihiro, H., Equivariant completion. II, Kyoto J. Math. 15 (1975), 573605.
[Tho87]Thomason, R. W., Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. Math. 65 (1987), 1634.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Spherical subgroups in simple algebraic groups

  • Friedrich Knop (a1) and Gerhard Röhrle (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed