Skip to main content Accessibility help
×
Home

The resolution property of algebraic surfaces

  • Philipp Gross (a1)

Abstract

We prove that on separated algebraic surfaces every coherent sheaf is a quotient of a locally free sheaf. This class contains many schemes that are neither normal, reduced, quasiprojective nor embeddable into toric varieties. Our methods extend to arbitrary two-dimensional schemes that are proper over an excellent ring.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The resolution property of algebraic surfaces
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The resolution property of algebraic surfaces
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The resolution property of algebraic surfaces
      Available formats
      ×

Copyright

References

Hide All
[Art71]Artin, M., On the joins of Hensel rings, Adv. Math. 7 (1971), 282296.
[BGI71]Berthelot, P., Grothendieck, A. and Illusie, L. (eds), Théorie des intersections et théorème de Riemann-Roch: Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Lecture Notes in Mathematics, vol. 225 (Springer, Berlin, 1971), Dirigé par Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre.
[Bor63]Borelli, M., Divisorial varieties, Pacific J. Math. 13 (1963), 375388.
[Bou65]Bourbaki, N., Éléments de mathématique, in Fasc. XXXI. Algèbre commutative, Actualités Scientifiques et Industrielles, vol. 1314 (Hermann, Paris, 1965), Chapitre 7: Diviseurs.
[BS03]Brenner, H. and Schröer, S., Ample families, multihomogeneous spectra, and algebraization of formal schemes, Pacific J. Math. 208 (2003), 209230.
[BV75]Bruns, W. and Vetter, U., Die Verallgemeinerung eines Satzes von Bourbaki und einige Anwendungen, Manuscripta Math. 17 (1975), 317325.
[Con07]Conrad, B., Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), 205257.
[EG85]Evans, E. G. and Griffith, P., Syzygies, London Mathematical Society Lecture Note Series, vol. 106 (Cambridge University Press, Cambridge, 1985).
[Fer03]Ferrand, D., Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), 553585.
[Gro61a]Grothendieck, A., Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci. 8 (1961), 1222.
[Gro61b]Grothendieck, A., Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Publ. Math. Inst. Hautes Études Sci. 11 (1961), 349511.
[Gro65]Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 1231.
[Gro66]Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1255.
[GD71]Grothendieck, A. and Dieudonné, J. A., Éléments de géométrie algébrique. I, Die Grundlehren der mathematischen Wissenschaften, vol. 166 (Springer, Berlin–Heidelberg–New York, 1971).
[Ill05]Illusie, L., Grothendieck’s existence theorem in formal geometry, in Fundamental algebraic geometry, Mathematical Surveys and Monographs, vol. 123 (American Mathematical Society, Providence, RI, 2005), 179, 233 with a letter (in French) by Jean-Pierre Serre.
[Jel05]Jelonek, Z., On the projectivity of threefolds, Proc. Amer. Math. Soc. 133 (2005), 25392542 (electronic).
[Kle66]Kleiman, S. L., Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293344.
[Mum70]Mumford, D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5 (Published for the Tata Institute of Fundamental Research, Bombay, 1970).
[Pay09]Payne, S., Toric vector bundles, branched covers of fans, and the resolution property, J. Algebraic Geom. 18 (2009), 136.
[Ray70]Raynaud, M., Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, vol. 119 (Springer, Berlin, 1970).
[RV04]Roth, M. and Vakil, R., The affine stratification number and the moduli space of curves, in Algebraic structures and moduli spaces, CRM Proceedings and Lecture Notes, vol. 38 (American Mathematical Society, Providence, RI, 2004), 213227.
[Sch99]Schröer, S., On non-projective normal surfaces, Manuscripta Math. 100 (1999), 317321.
[SV04]Schröer, S. and Vezzosi, G., Existence of vector bundles and global resolutions for singular surfaces, Compos. Math. 140 (2004), 717728.
[Sch82]Schuster, H.-W., Locally free resolutions of coherent sheaves on surfaces, J. Reine Angew. Math. 337 (1982), 159165.
[Som78]Sommese, A. J., Submanifolds of Abelian varieties, Math. Ann. 233 (1978), 229256.
[Ste98]Steffen, F., A generalized principal ideal theorem with an application to Brill–Noether theory, Invent. Math. 132 (1998), 7389.
[Tot04]Totaro, B., The resolution property for schemes and stacks, J. Reine Angew. Math. 577 (2004), 122.
[Tot10]Totaro, B., Line bundles with partially vanishing cohomology (2010), arXiv:1007.3955v1 [math.AG].
[Voi02]Voisin, C., A counterexample to the Hodge conjecture extended to Kähler varieties, Int. Math. Res. Not. IMRN 20 (2002), 10571075.
[W{{{\relax ł}}}o93]Włodarczyk, J., Embeddings in toric varieties and prevarieties, J. Algebraic Geom. 2 (1993), 705726.
[W{{{\relax ł}}}o99]Włodarczyk, J., Maximal quasiprojective subsets and the Kleiman–Chevalley quasiprojectivity criterion, J. Math. Sci. Univ. Tokyo 6 (1999), 4147.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed